首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 113 毫秒
1.
通过Plackett-Burman试验设计、最陡爬坡试验以及响应面分析法,对L-赖氨酸棒杆菌株发酵赖氨酸培养基进行优化。利用Plackett-Burman试验设计来确定影响L-赖氨酸得率的主要因素,结果表明:NaCl、MgSO4·7H2O、玉米浆对L-赖氨酸得率的影响最大。利用最陡爬坡试验确定最大响应区域,在该基础上利用响应面分析法中的Box-Behnken设计,确定培养基的最佳条件为NaCl 2.72%,MgSO4·7H2O0.05%,玉米浆21.13g/L。在该条件下,L-赖氨酸的理论得率为104.75g/L,实际得率为104.60g/L,比优化前的87.93g/L提高18.96%。  相似文献   

2.
采用响应面OKSM)对L-组氨酸发酵培养基成分葡萄糖、硫酸铵、玉米浆进行优化。采用多元二次回归方程拟合3种因素与组氨酸产量的函数关系,并得到了最适发酵培养基。在优化培养条件下,组氨酸的产量由18.13g./L提高到20.28g/L,产量提高了11.86%。  相似文献   

3.
为提高赖氨酸发酵的产酸浓度、糖酸转化率等发酵指标,通过Plackett-Burman实验设计筛选出培养基中对赖氨酸发酵影响最大的成分为蛋氨酸、糖蜜和谷氨酸,再通过响应面设计实验对这3种成分进行优化,得到最适含量为蛋氨酸0.195g/L,糖蜜15.70mL/L,谷氨酸0.215g/L,赖氨酸浓度从1.90g/100mL提高至2.25g/100mL。发酵培养基中加入10g/L的(NH4)2SO4作为改进氮源,赖氨酸浓度可进一步提高至2.41g/100mL,发酵周期由30h缩短至25h。通过优化培养基和改进氮源,可以显著降低赖氨酸的生产成本,提高产品收益。  相似文献   

4.
响应面分析法优化L-乳酸发酵培养基的研究   总被引:5,自引:0,他引:5  
用响应面分析法对干酪乳杆菌(Lactobacilluscaseisub-sp.rhamnosus)生产乳酸的培养基组分进行了优化,建立了影响因素与响应值之间的函数关系,得到一个回归方程。根据回归方程优化得出,当玉米淀粉糖化液为93.3g/L,玉米浆24.1g/L。麸皮8.4g/L时乳酸产量最高。  相似文献   

5.
以产L-乳酸光学纯度为99.3%的粪肠球菌(Enterococcus faecium)HY-38作为出发菌株,通过Plackett-Burman试验设计确定影响L-乳酸的产量的主要因素,筛选出3个有显著影响效应的因素,分别为葡萄糖、酵母膏及乙酸钠,最陡爬坡试验逼近影响因素最佳值区域,采用Box-Behnken设计及响应面分析对L-乳酸发酵培养基成分进行优化。结果表明,L-乳酸发酵培养基成分确定为葡萄糖148 g/L、酵母膏12.4 g/L、碳酸钙80 g/L、乙酸钠5.0 g/L、磷酸二氢钾1.0 g/L、硫酸镁1.2 g/L、硫酸锰0.04 g/L,在此条件下,L-乳酸的产量达到134.7g/L,比优化前(108.3 g/L)提高了24.3%。  相似文献   

6.
为了研究一株分离自新疆牧民家庭自制酸马奶中的乳酸乳球菌KLDS 4.0325产L-乳酸的能力,以L-/D-乳酸试剂盒验证该菌种在发酵过程中所产L-乳酸的光学纯度为100%。利用Plackett-Burman设计法对影响该菌株发酵的培养基主要组分进行筛选,确定影响L-乳酸产量的主要因素为蔗糖、酵母粉、K2HPO4。在此基础上,采用响应面法优化发酵培养基的组成,结果表明:当蔗糖添加量为102.9 g/L、酵母粉添加量为2.5 g/L、K2HPO4添加量为7.9 g/L时,L-乳酸产量最大,可达86.6 g/L,在最优发酵条件下获得的实测值与模型预测值(86.3 g/L)吻合,说明所建立的模型是切实可行的。  相似文献   

7.
利用响应面法优化L-苏氨酸发酵条件   总被引:1,自引:0,他引:1  
采用响应面设计方法对E.coli TRFC苏氨酸发酵培养基及培养条件进行了优化。用部分因子分析法研究了原始发酵培养基及培养条件对响应值的影响程度,发现蔗糖的质量浓度及接种量对苏氧酸产量的影响显著。利用最陡爬坡实验、中心旋转组合设计结合响应面分析确定了蔗糖的质量浓度及接种量(58.739 g/L,3.46%)。在优化条件下进行5L发酵罐实验,L-苏氨酸的产量达到121.20 g/L,比未优化条件下提高了12.43%。  相似文献   

8.
细菌发酵生产L-乳酸培养基的优化   总被引:4,自引:0,他引:4       下载免费PDF全文
运用响应面分析法(中心组合设计)对干酪乳杆菌(Lactobacilluscasei)LB1 11生产L 乳酸的培养基C/N进行了研究,同时研究了有机氮源(蛋白胨、玉米浆和酵母膏)和无机氮源(NH4Cl和(NH4)2HPO4)对L 乳酸产量的影响,并进行了葡萄糖、蛋白胨、NH4Cl和(NH4)2HPO4四因素的响应面分析实验.结果表明,适宜的培养基C/N(质量比)为12∶1~13∶1,培养基组成:葡萄糖120.13g/L,蛋白胨19.342g/L,NH4Cl4g/L,(NH4)2HPO42.010g/L,L 乳酸产量可达到103g/L.优化后的培养基适合于对干酪乳杆菌进行代谢网络分析.  相似文献   

9.
L-异亮氨酸发酵培养基的响应面法优化   总被引:13,自引:2,他引:13  
借助于SAS软件 ,采用Plackett Burman试验设计法及响应面法分析 ,对L 异亮氨酸产生菌BrevibacteriumflavumTC 2 1进行了发酵培养基的优化研究。在初始发酵培养基的基础上寻优 ,优化后的发酵培养基使TC 2 1菌株的L 异亮氨酸产率提高了 2 2 5 2 %。  相似文献   

10.
为了提高以糖蜜为碳源产L-赖氨酸的能力,本文比较了用酸、酶制剂等方法处理糖蜜后对产L-赖氨酸的影响,确定了酶制剂处理为糖蜜的最佳处理方法,以及酶制剂处理糖蜜的最佳条件。经试验验证,利用酶制剂处理糖蜜后,葡萄糖含量达到145g/L,酶处理糖蜜的最佳条件为:pH5.0,室温,酶制剂添加量0.025%,处理时间5h。在最佳处理条件下处理糖蜜,L-赖氨酸产量比不处理提高了58.3%,比酸处理提高了21.8%。  相似文献   

11.
12.
X.-X. Zhou    Y.-J. Pan    Y.-B. Wang    W.-F. Li 《Journal of food science》2008,73(6):M245-M249
ABSTRACT:  Nisin is an effective food biopreservative widely used in food industry. However, 1 problem of concern is limited production rate and final nisin concentration. A nisin-producing strain, L. lactis Lac2, a mutant strain with high yield of nisin, was obtained in our laboratory recently. In the present study, a fractional factorial design was applied to investigate the main factors that affect the yield of L. lactis Lac2. Central composite experimental design and response surface methodology were adopted to derive a statistical model for optimizing the composition of the medium. The results showed that the optimum medium for nisin production of L. lactis Lac2 was composed of 2.68% sucrose (w/v), 0.5% tryptone (w/v), 1% yeast extract (w/v), 0.3% Tween-80 (w/v), 0.02% MgSO4·7H2O (w/v), 0.81% NaCl (w/v), 1.91% K2HPO4 (w/v), 0.05% ascorbic acid (w/v), and 2% agar (w/v) (if necessary) at pH 6.5. When cultured in the optimum medium, the nisin yield is an average of 3381.81 IU/mL, which nearly doubled the yield when incubated in the initial medium. Also, the concentration of tryptone was decreased while that of the sucrose was increased when compared with CM broth, which means a reduction of the fermentation cost.  相似文献   

13.
通过对出芽短梗霉生长的培养基进行优化,以提高普鲁兰多糖的产量。首先采用单因素试验筛选出有显著效应的3个因素,再利用响应面Box-Behnken设计优化显著因素的水平。结果表明:碳源(蔗糖)添加量、氮源(酵母浸膏)添加量和金属离子对粗普鲁兰多糖的产量都有显著影响(P<0.05),蔗糖添加量和酵母浸膏添加量的交互作用相对明显,蔗糖添加量和金属离子以及酵母浸膏添加量和金属离子的交互作用不显著。优化的培养基组成为:蔗糖添加量56.63g/L、酵母浸膏添加量3.74g/L、金属离子选择Mg2+,此条件下粗普鲁兰多糖产量为60.358g/L。  相似文献   

14.
通过Plackett-Burman设计和响应面分析对微生物发酵提纯水苏糖的培养基进行了优化。通过Plackett-Burman设计从6个因素中筛选出了有显著影响的酵母浸膏、酪蛋白胨和硝酸钠3个因素;通过最陡爬坡和Box-bohnken设计进一步优化,并利用Minitab软件进行回归分析,得到以上3个因素的适宜浓度分别为(g/L):酵母膏13.8、酪蛋白胨8.2、硝酸钠4.8。采用优化的培养基下,水苏糖纯度由85%提高到91%。  相似文献   

15.
利用Minitab软件中的Plackett-Burman设计和响应面的Box-Behnken中心组合设计,对发酵生产甲硫氨酸氨肽酶的培养基进行优化。在培养基成分单因素优化的基础上,利用Plackett-Burman实验,确定麦芽糊精、酵母粉及硫酸镁为甲硫氨酸氨肽酶发酵生产的3个显著因素。进一步用最陡爬坡法实验将显著因素的水平逼近最优区域。最后用Box-Behnken建立这3个显著因素的二次回归模型,通过对响应面曲面进行分析,得出麦芽糊精、酵母粉和硫酸镁的最佳浓度分别为:26.00、5.3、0.204 g/L。在优化培养基中,甲硫氨酸氨肽酶生产菌的发酵水平增加约1.11倍,达到50.84 U/mL,实验值与预期值基本相符。  相似文献   

16.
为提高牛樟芝(Antrodia camphorata)菌丝体产三萜类化合物的能力,采用筛选试验(Plackett-Burman,PB)试验和中心组合设计(central composite design,CCD)试验对发酵培养基进行优化。首先通过PB试验对影响菌丝体产三萜类化合物的8个组分进行筛选,确定玉米粉、牛肉膏、黄豆粉为3个主要影响因素,然后依次用最陡爬坡试验、CCD和响应面分析,确定主要因素的最佳浓度。由此得到最佳培养基配方:20 g/L葡萄糖,10 g/L大豆粉,16.07 g/L玉米粉,4.5 g/L牛肉膏,31.93 g/L黄豆粉,1 g/L MgSO4,2 g/L KH2PO4,50 mg/L VB1。采用基本发酵培养基培养牛樟芝其菌丝体中总三萜含量为(12.29±0.43)mg/g,经培养基优化处理后三萜类含量为(15.40±0.15)mg/g,相比初始其产量提高了25.3%。  相似文献   

17.
采用析因设计法对影响红法夫酵母发酵的相关因素进行评价,发现酵母膏、初始pH 值、葡萄糖及果糖浓度对虾青素产量影响显著。利用中心组合设计及响应面分析对影响虾青素产量的关键因素做进一步的优化,得到较佳的试验点为酵母膏浓度5.6g/L、初始pH 8.5、葡萄糖与果糖浓度之比24:21(m/V)。优化后虾青素产量从5.890mg/L提高到10.900mg/L;7.5L 发酵罐中,虾青素产量可达18.300mg/L,比摇瓶培养提高了68%。  相似文献   

18.
响应面法优化茶氨酸生物合成基因工程菌发酵条件的研究   总被引:1,自引:0,他引:1  
陆文渊  成浩  王丽鸳  周健 《食品科学》2008,29(6):243-247
本实验对具有茶氨酸生物合成能力的γ-谷氨酰转肽酶(γ-GGT)基因工程菌的发酵条件进行了优化.首先采用Plackett-Burman实验设计对影响γ-GGT活性的基因工程菌发酵条件进行筛选.然后将筛选得到的初始pH、培养时间、异丙基硫代-β-D-半乳糖苷(isopropylthio-β-D-galactoside,IPTG)诱导温度3个关键影响因素进行响应面分析,通过对二次多项回归方程求解得到该基因工程菌的最佳培养条件为初始pH7.32、培养时间6.67h、IPTG31.51℃诱导.γ-GGT活性的最大预测值为4.60U/ml,实验验证值为4.64U/ml.最后通过基因工程菌催化合成茶氨酸反应,得到茶氨酸的产量为35.18g/L.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号