首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Patterning along the dorsal-ventral (D-V) axis of Xenopus and Drosophila embryos is believed to occur through a conserved molecular mechanism, with homologous proteins Chordin and Short gastrulation (Sog) antagonizing signaling by bone morphogenetic protein 4 (BMP-4) and Decapentaplegic (Dpp), respectively. We have isolated a zebrafish gene that is highly homologous to chordin and sog within cysteine-rich domains and exhibits conserved aspects of expression and function. As in Xenopus embryos, zebrafish chordin is expressed in the organizer region and transiently in axial mesoderm. Injection of zebrafish chordin mRNA to the ventral side of Xenopus embryos induced secondary axes. Ectopic overexpression in zebrafish resulted in an expansion of paraxial mesoderm and neurectoderm at the expense of more lateral and ventral derivatives, producing a range of defects similar to those of dorsalized zebrafish mutants (Mullins et al., 1996). In accordance with the proposed function of chordin in D-V patterning, dorsalized zebrafish mutants showed expanded domains of chordin expression by midgastrulation, while some ventralized mutants had reduced expression; however, in all mutants examined, early organizer expression was unaltered. In contrast to Xenopus, zebrafish chordin is also expressed in paraxial mesoderm and ectoderm and in localized regions of the developing brain, suggesting that there are additional roles for chordin in zebrafish embryonic development. Surprisingly, paraxial mesodermal expression of chordin appeared unaltered in spadetail mutants that later lack trunk muscle (Kimmel et al., 1989), while axial mesodermal expression was affected. This finding reveals an unexpected function for spadetail in midline mesoderm and in differential regulation of chordin expression during gastrulation.  相似文献   

2.
3.
4.
5.
6.
Mesoderm formation is critical for the establishment of the animal body plan and in Drosophila requires the snail gene. This report concerns the cloning and expression pattern of the structurally similar gene snail1 from zebrafish. In situ hybridization shows that the quantity of snail1 RNA increases at the margin of the blastoderm in cells that involute during gastrulation. As gastrulation begins, snail1 RNA disappears from the dorsal axial mesoderm and becomes restricted to the paraxial mesoderm and the tail bud. snail1 RNA increases in cells that define the posterior border of each somite and then disappears when somitic cells differentiate. Later in development, expression appears in cephalic neural crest derivatives. Many snail1-expressing cells were missing from mutant spadetail embryos and the quantity of snail1 RNA was greatly reduced in mutant no tail embryos. The work presented here suggests that snail1 is involved in morphogenetic events during gastrulation, somitogenesis and development of the cephalic neural crest, and that no tail may act as a positive regulator of snail1.  相似文献   

7.
The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord's role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3' in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date.  相似文献   

8.
Midkine (MK) is a heparin-binding growth factor that has been implicated in neural survival and differentiation, fibrinolysis, and carcinogenesis. It is expressed in the nervous system during early Xenopus development. In the present study, we demonstrated that injection of vegetal blastomeres with Xenopus MK at the 8-cell stage results in incomplete invagination. In the case of dorsal vegetal injection, hypertrophic neural tissue is produced. Animal caps isolated from embryos that have been injected with Xenopus MK and cultured with activin do not elongate, and all mesoderm markers examined, including both head and trunk/tail ones, are greatly diminished. In contrast, head-specific neural markers, XANF-1 and Xotx2, are induced, while trunk/tail neural markers, XlHbox6 and F-spondin, are decreased. Moreover, MK showes the same effects in animal caps injected with Xenopus Smad2 mRNA.  相似文献   

9.
The zebrafish locus one-eyed pinhead (oep) is essential for the formation of anterior axial mesoderm, endoderm and ventral neuroectoderm. At the beginning of gastrulation anterior axial mesoderm cells form the prechordal plate and express goosecoid (gsc) in wild-type embryos. In oep mutants the prechordal plate does not form and gsc expression is not maintained. Exposure to lithium, a dorsalizing agent, leads to the ectopic induction and maintenance of gsc expression in wild-type embryos. Lithium treatment of oep mutants still leads to ectopic gsc induction but not maintenance, suggesting that oep acts downstream of inducers of dorsal mesoderm. In genetic mosaics, wild-type cells are capable of forming anterior axial mesoderm in oep embryos, suggesting that oep is required in prospective anterior axial mesoderm cells before gastrulation. The oep gene is also essential for endoderm formation and the early development of ventral neuroectoderm, including the floor plate. The loss of endoderm is already manifest during gastrulation by the absence of axial-expressing cells in the hypoblast of oep mutants. These findings suggest that oep is also required in lateral and ventral regions of the gastrula margin. The sonic hedgehog (shh).gene is expressed in the notochord of oep animals. Therefore, the impaired floor plate development in oep mutants is not caused by the absence of the floor plate inducer shh. This suggests that oep is required downstream or in parallel to shh signaling. The ventral region of the forebrain is also absent in oep mutants, leading to severe cyclopia. In contrast, anterior-posterior brain patterning appears largely unaffected, suggesting that underlying prechordal plate is not required for anterior-posterior pattern formation but might be involved in dorsoventral brain patterning. To test if oep has a wider, partially redundant role, we constructed double mutants with two other zebrafish loci essential for patterning during gastrulation. Double mutants with floating head, the zebrafish Xnot homologue, display enhanced floor plate and adaxial muscle phenotypes. Double mutants with no tail (ntl), the zebrafish homologue of the mouse Brachyury locus, display severe defects in midline and mesoderm formation including absence of most of the somitic mesoderm. These results reveal a redundant function of oep and ntl in mesoderm formation. Our data suggest that both oep and ntl act in the blastoderm margin to specify mesendodermal cell fates.  相似文献   

10.
Mutations in the mouse indicate that quaking gene function is essential for both embryogenesis and for development of the nervous system. Recent isolation of the mouse quaking gene identified a putative RNA-binding protein containing a single KH domain. We have previously isolated the Xenopus homolog of quaking, Xqua, and shown that the sequence is highly conserved through evolution. Here, we report experimental data on the biochemical function of the quaking protein and its role during development. We demonstrate that the quaking protein expressed during early embryogenesis, pXqua357, can bind RNA in vitro, and we have mapped the regions of the protein that are essential for RNA binding. We present evidence that pXqua can form homodimers and that dimerization may be required for RNA binding. Oocyte injection experiments show that pXqua357 is located in both the nucleus and cytoplasm. In the Xenopus embryo, Xqua is first expressed during gastrulation in the organizer region and its derivative, the notochord. In later stage embryos, Xqua is expressed in a number of mesodermal and neural tissues. We demonstrate that disruption of normal Xqua function, by overexpression of a dominant inhibitory form of the protein, blocks notochord differentiation. Xqua function appears to be required for the accumulation of important mRNAs such as Xnot, Xbra, and gsc. These results indicate an essential role for the quaking RNA-binding protein during early vertebrate embryogenesis.  相似文献   

11.
12.
13.
14.
Segmentation of the vertebrate embryo begins when the paraxial mesoderm is subdivided into somites, through a process that remains poorly understood. To study this process, we have characterized X-Delta-2, which encodes the second Xenopus homolog of Drosophila Delta. Strikingly, X-Delta-2 is expressed within the presomitic mesoderm in a set of stripes that corresponds to prospective somitic boundaries, suggesting that Notch signaling within this region establishes a segmental prepattern prior to somitogenesis. To test this idea, we introduced antimorphic forms of X-Delta-2 and Xenopus Suppressor of Hairless (X-Su(H)) into embryos, and assayed the effects of these antimorphs on somite formation. In embryos expressing these antimorphs, the paraxial mesoderm differentiated normally into somitic tissue, but failed to segment properly. Both antimorphs also disrupted the segmental expression of X-Delta-2 and Hairy2A, a basic helix-loop-helix (bHLH) gene, within the presomitic mesoderm. These observations suggest that X-Delta-2, via X-Notch-1, plays a role in segmentation, by mediating cell-cell interactions that underlie the formation of a segmental prepattern prior to somitogenesis.  相似文献   

15.
16.
Vertebrate head induction by anterior primitive endoderm   总被引:1,自引:0,他引:1  
In vertebrates the antero-posterior organization of the embryonic body axis is thought to result from the activity of two separate centers, the head organizer and the trunk organizer, as operationally defined by Spemann in the 1920s. Current molecular studies have supported the existence of a trunk organizer activity while the presence of a distinct head inducing center has remained elusive. Mainly based on analyses of headless mutants in mice, it has been proposed that the anterior axial mesoderm plays a determining role in head induction. Recent gain- and loss-of-function studies in various organisms, however, provide compelling evidence that a largely ignored region, the anterior primitive endoderm, specifies rostral identity. In this review we discuss the emerging concept that the anterior primitive endoderm, rather than the prechordal plate mesoderm, induces head development in the vertebrate embryo.  相似文献   

17.
We examined the expression of Zic1, Zic2, and Zic3 genes in the mouse embryo by means of in situ hybridization. Zic genes were found as a group of genes coding for zinc finger proteins that are expressed in a restricted manner in the adult mouse cerebellum. We showed that the genes are the vertebrate homologues of Drosophila odd-paired, which may play an essential role in parasegmental subdivision and in visceral mesoderm development. The expression of the three Zic genes was first detected at gastrulation in a spatially restricted manner. At neurulation, the expression became restricted to the dorsal neural ectoderm and dorsal paraxial mesoderm. During organogenesis, the three genes were expressed in specific regions of several developing organs, including dorsal areas of the brain, spinal cord, paraxial mesenchyme, and epidermis, the marginal zone of the neural retina and distal regions of the developing limb. For all stages, significant differences in the spatial expression of Zic1, Zic2, and Zic3 were observed. Furthermore, the expression of Zic genes in Pax3, Wnt-1, and Wnt-3a mutant embryos suggested that Zic genes are not primarily regulated by the three genes which were expressed in dorsal areas similar to Zic genes. However, in open brain, a mutant with severe neural tube defects, and in the Wnt-3a mutant mice, the expression of Zic genes was changed. The changed expression pattern in Wnt-3a mutant mice suggests that Zic genes in the neural tube are regulated by the factors from notochord. Our findings suggest that Zic genes are involved in many developmental processes. Furthermore, analysis of gene expression patterns in different mouse mutants indicated that Zic genes may act upstream of many known developmental regulatory genes.  相似文献   

18.
19.
Exposure of vertebrate embryos to ethanol causes cyclopia, but little is known about the underlying mechanisms of this effect. Here we show that cyclopia can be induced in the zebrafish by a short ethanol treatment during early gastrula stages and is accompanied by loss of gene expression characteristic of the ventral aspects of the fore- and midbrain. Interestingly, defects in the expression of ventral brain markers are linked to impaired migration of the prechordal plate mesoderm indicating that the correct position of the prechordal plate mesoderm under the anterior neural plate in the zebrafish embryo is required for specification of the anterior neural midline. Ethanol-induced cyclopia does not, however, impair the induction of anterior neuroectodermal structures in general. Finally, as genes like goosecoid and islet-1 are expressed in prechordal plate cells in a temporal pattern similar to control embryos despite the ectopic position of expressing cells, it appears that regulation of prechordal plate-specific gene expression is largely independent of the final position of the prechordal plate.  相似文献   

20.
Nodal-related 1 (ndr1) and nodal-related 2 (ndr2) genes in zebrafish encode members of the nodal subgroup of the transforming growth factor-beta superfamily. We report the expression patterns and functional characteristics of these factors, implicating them in the establishment of dorsal-ventral polarity and left-right asymmetry. Ndr1 is expressed maternally, and ndr1 and ndr2 are expressed during blastula stage in the blastoderm margin. During gastrulation, ndr expression subdivides the shield into two domains: a small group of noninvoluting cells, the dorsal forerunner cells, express ndr1, while ndr2 RNA is found in the hypoblast layer of the shield and later in notochord, prechordal plate, and overlying anterior neurectoderm. During somitogenesis, ndr2 is expressed asymmetrically in the lateral plate as are nodal-related genes of other organisms, and in a small domain in the left diencephalon, providing the first observation of asymmetric gene expression in the embryonic forebrain. RNA injections into Xenopus animal caps showed that Ndr1 acts as a mesoderm inducer, whereas Ndr2 is an efficient neural but very inefficient mesoderm inducer. We suggest that Ndr1 has a role in mesoderm induction, while Ndr2 is involved in subsequent specification and patterning of the nervous system and establishment of laterality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号