首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
管腔内支架用金属材料的生物相容性及其表面改性   总被引:7,自引:0,他引:7  
刘敬肖  杨大智  王伟强 《功能材料》2000,31(6):584-586,589
管腔内金属支架是用于植入人体各管道狭窄处起支撑作用的医疗器械,因其与人体组织直接接触,故对支架的生物相容性的研究十分重要。本文对用于管腔内支架的316L不锈钢和NiTi合金的耐腐蚀性和生物相容性进行了综合评述;并以冠状动脉支架为应用背景,着重分析了影响血管内支架血液相容性的因素,提出了对支架进行表面改性处理以提高其血液相容性的技术路线。  相似文献   

2.
生物材料用于人体必须要具备生物相容性。尤其是与血液相接触的材料如血管内支架必须要具备血液相容性。材料的表面特性直接影响血液系统中是否会出现血栓。本文针对金属血管内支架的表面特性、与血液的界面反应以及用于提高血液相容性的低温等离子表面改性进行了简要综述  相似文献   

3.
低温等离子体对血管内金属支架的表面改性   总被引:3,自引:0,他引:3  
生物材料用于人体必须要具备生物相容性。尤其是与血液相接触的材料如血管内支架必须要具备血液相容性。材料的表面特性直接影响血液系统中是否会出现血栓。本针对金属血管内支架的表面特性、与血液的界面反应以及用于提高血液相容性的低温等离子表面改性进行了简要综述。  相似文献   

4.
血管内支架是治疗心血管疾病最有效的方法之一,普通金属支架易导致支架内再狭窄,生物可降解血管支架的暂时存留性明显降低了支架内再狭窄的发生.简述了支架的加工工艺,同时对生物可降解血管支架的研究现状进行了分类论述,包括生物可降解膜被覆金属支架、载药生物可降解膜被覆金属支架(药物涂层支架)、完全生物可降解性冠状动脉支架和载药生物可降解性冠状动脉支架.最后展望了生物可降解血管支架的发展趋势.  相似文献   

5.
生物高分子材料广泛应用于临床医疗,可用作人工血管、起搏器、组织工程支架等,因而必须具备良好的血液相容性.综述了生物高分子材料血液相容性的研究现状,主要包括凝血、血栓形成机理以及抗凝血系统等,重点介绍了高分子材料植入体内引起凝血及血栓形成的具体机制,阐述了设计微相分离结构、化合物接枝改性、引入生物活性分子、材料表面内皮化等改善材料血液相容性的主要途径.最后从分子生物学角度出发展望了今后高分子材料改性的研究方向.  相似文献   

6.
针对心血管支架内再狭窄问题(ISR),作者团队利用Cu元素对心血管系统的有益生物功能,创新地发展出具有生物功能的新型含铜血管支架材料(含铜不锈钢及钻基合金)。综述了近年来团队在新型含铜金属血管支架材料方面的研究进展。研究结果表明,含铜金属血管支架材料能促进内皮细胞增殖及迁移,并降低其凋亡率;对动脉平滑肌细胞增殖及迁移具有抑制作用,并促进其凋亡;减少血小板在支架表面的粘附,延长动态凝血时间,降低血栓形成倾向。此外,新型含铜金属血管支架材料还具有有优异的生物相容性。动物实验结果表明,含铜不锈钢心血管支架在动物体内可明显促进内皮化、抑制血栓形成,且生物相容性好,可以抑制支架内再狭窄的发生,有望得到临床应用。  相似文献   

7.
聚氨酯人工血管的研究进展   总被引:1,自引:0,他引:1  
聚氨酯由于其优良的机械性能和生物相容性而广泛应用于生物医用材料,如制作人工器官、药物释放载体及人工血管等.但是当它作为体内移植材料使用时会引起机体的炎症反应,并且与血液接触时还会引起持续的凝血和内膜增生.因此,要想将聚氨酯应用于人工血管,就要进一步提高它的生物相容性、血液相容性和细胞相容性等.目前主要是通过对聚氨酯进行本体改性、表面接枝聚合改性、等离子体处理聚氨酯表面、涂覆生物分子及结构设计等方法来提高其在体内使用时的性能.  相似文献   

8.
生物可降解多孔支架的研究进展   总被引:4,自引:0,他引:4  
作为组织工程主要构建物的生物支架在组织工程中正发挥着越来越重要的作用,通过设计及调节生物支架的微环境,可使得其不仅能作为细胞附着、生长和增殖的基体,而且可为新器官的生长成形提供模板.因此,生物支架应具备优异的生物相容性及可降解性,同时具有较好的加工及力学性能.文中主要综述了目前研究并开发了的生物可降解多孔支架的制备方法及研究成果,并对其发展方向作了展望.  相似文献   

9.
生物可降解支架是在植入手术后血管修复期间为血管提供一定的支撑作用,然后预期在血管修复完成后一段时间内,通过与体内环境的相互作用转化成无毒性的降解产物被人体所吸收或排出体外。因此,人们对作为可降解支架的金属材料的力学性能、耐腐蚀性、降解特性、生物相容性等都提出了严格的要求。近年来,铁基合金作为可降解金属材料成为生物医学领域新的研究热点。纯铁是人体必需的微量元素之一,且具有优异的力学特性、耐腐蚀性、降解特性、生物性能以及加工成型性,这使得铁基合金作为生物医用可降解材料成为可能。然而,纯铁的降解速率过慢,这是阻碍其作为生物医用金属材料的主要问题之一。合金化在改善铁基材料降解性能的同时也可以改善力学性能,从而提高铁基材料的综合性能。在提高降解速率的同时,铁基材料也应保证足够的力学性能来支撑血管,并且力学性能越好、支架壁越薄、质量越小,则越能缩短降解时间,降解产物越少,对人体的毒性也越小。本文综述了铁基合金作为支架材料的研究现状,以及目前报道的铁锰合金的力学性能、腐蚀降解性能以及体外细胞相容性,并重点介绍了铁锰合金在生物可降解支架方面的研究现状以及需解决的关键问题,同时给出可能的解决方案。  相似文献   

10.
超弹性镍钛合金血管内支架的有限元分析   总被引:1,自引:0,他引:1  
梁栋科  杨大智  齐民  王伟强 《功能材料》2005,36(3):471-473,476
镍钛合金由于其优良的机械性能和生物相容性已经被广泛的应用于生物医用领域,然而由于其超弹性为高度非线性的应力 应变关系,如何对其相关器械的性能进行分析与评价是设计人员面临的主要问题。本文介绍了有限元技术中镍钛合金材料模型的建立方法,并利用有限元软件 ANSYS8.0 分析了一种超弹性镍钛合金血管内支架的自膨胀过程。结论为支架释放后,将对支架端部血管产生较高的内应力,这容易损伤此处血管,引起血栓及内膜增生等问题;镍钛合金支架释放后,对应的应力水平只有 300MPa左右,远远小于不锈钢支架的应力值。因此,支架的柔顺性更好,对血管的刺激更小,这对于提高支架的植入效果将有很大的帮助;有限元技术可以方便的对镍钛合金器械进行模拟分析,这对于镍钛合金器械的研制与开发将有很大的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号