首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents and evaluates three energy management systems (EMSs) based on Particle Swarm Optimization (PSO) for long-term operation optimization of a grid-connected hybrid system. It is composed of wind turbine (WT) and photovoltaic (PV) panels as primary energy sources, and hydrogen system (fuel cell –FC–, electrolyzer and hydrogen storage tank) and battery as energy storage system (ESS). The EMSs are responsible for making the hybrid system produce the demanded power, deciding on the energy dispatch among the ESS devices. The first PSO-based EMS tries to minimize the ESS utilization costs, the second one to maximize the ESS efficiency, and the third one to optimize the lifetime of the ESS devices. Long-term simulations of 25 years (expected lifetime of the hybrid system) are shown in order to demonstrate the right performance of the three EMSs and their differences. The simulations show that: 1) each EMS outperforms the others in the designed target; and 2) the third EMS is considered the best EMS, because it needs the least ESS devices, and presents the lowest total acquisition cost of hybrid system, whereas the rest of parameters are similar to the best values obtained by the other EMSs.  相似文献   

2.
This paper presents a sizing method and different control strategies for the suitable energy management of a stand-alone hybrid system based on photovoltaic (PV) solar panels, hydrogen subsystem and battery. The battery and hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as energy storage and support system. In order to efficiently utilize the energy sources integrated in the hybrid system, an appropriate sizing is necessary. In this paper, a new sizing method based on Simulink Design Optimization (SDO) of MATLAB was used to perform a technical optimization of the hybrid system components. An analysis cost has been also performed, in that the configuration under study has been compared with those integrating only batteries and only hydrogen system. The dynamic model of the designed hybrid system is detailed in this paper. The models, implemented in MATLAB-Simulink environment, have been designed from commercially available components. Three control strategies based on operating modes and combining technical-economic aspects are considered for the energy management of the hybrid system. They have been designed, primarily, to satisfy the load power demand and, secondarily, to maintain a certain level at the hydrogen tank (hydrogen energy reserve), and at the state of charge (SOC) of the battery bank to extend its life, taking into account also technical-economic analysis. Dynamic simulations were performed to evaluate the configuration, sizing and control strategies for the energy management of the hybrid system under study in this work. Simulation results show that the proposed hybrid system with the presented controls is able to provide the energy demanded by the loads, while maintaining a certain energy reserve in the storage sources.  相似文献   

3.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

4.
Proton exchange membrane fuel cell (PEMFC) electric vehicle is an effective solution for improving fuel efficiency and onboard emissions, taking advantage of the high energy density and short refuelling time. However, the higher cost and short life of the PEMFC system and battery in an electric vehicle prohibit the fuel cell electric vehicle (FCEV) from becoming the mainstream transportation solution. The fuel efficiency-oriented energy management strategy (EMS) cannot guarantee the improvement of total operating costs. This paper proposes an EMS to minimize the overall operation costs of FCEVs, including the cost of hydrogen fuel, as well as the cost associated with the degradations of the PEMFC system and battery energy storage system (ESS). Based on the PEMFC and battery performance degradation models, their remaining useful life (RUL) models are introduced. The control parameters of the EMS are then optimized using a meta-model based global optimization algorithm. This study presents a new optimal control method for a large mining truck operating on a real closed-road operation cycle, using the combined energy efficiency and performance degradation cost measures of the PEMFC system and lithium-ion battery ESS. Simulation results showed that the proposed EMS could improve the total operating costs and the life of the FCEV.  相似文献   

5.
Recently, the increasing energy demand has caused dramatic consumption of fossil fuels and unavoidable raising energy prices. Moreover, environmental effect of fossil fuel led to the need of using renewable energy (RE) to meet the rising energy demand. Unpredictability and the high cost of the renewable energy technologies are the main challenges of renewable energy usage. In this context, the integration of renewable energy sources to meet the energy demand of a given area is a promising scenario to overcome the RE challenges. In this study, a novel approach is proposed for optimal design of hybrid renewable energy systems (HRES) including various generators and storage devices. The ε-constraint method has been applied to minimize simultaneously the total cost of the system, unmet load, and fuel emission. A particle swarm optimization (PSO)-simulation based approach has been used to tackle the multi-objective optimization problem. The proposed approach has been tested on a case study of an HRES system that includes wind turbine, photovoltaic (PV) panels, diesel generator, batteries, fuel cell (FC), electrolyzer and hydrogen tank. Finally, a sensitivity analysis study is performed to study the sensibility of different parameters to the developed model.  相似文献   

6.
Diesel engine power plants are still widely used on many remote islands in South Korea, despite their disadvantages. Aiming to solve economic and environmental pollution problems, a remote island case study was conducted on Ui Island, aiming to offer a zero-emissions solution by using renewable energy sources in an off-grid application. Power was generated from solar, wind, and hydrogen sources. Li-ion batteries and hydrogen were used as energy storage systems. In addition, PV/battery, wind/battery, PV/wind/battery, PV/battery/PEMFC, wind/battery/PEMFC, and PV/wind/battery/PEMFC systems were simulated using the HOMER software to determine the optimal sizes and techno-economic feasibility. The results show that the PV/wind/battery/PEMFC system is the best system. The configuration of the system consists of 990-kW PV panels, 700-kW wind turbines, a 1088-kWh Li-ion battery bank, 534-kW converter, 300-kW PEMWE system, 300-kg hydrogen tank, and 100-kW PEMFC system. The total NPC of the system is $5,276,069, and the LCOE is 0.366 $/kWh.  相似文献   

7.
Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. Focusing on the inevitable impact on the grid caused by strong randomicity and apparent intermittency of photovoltaic (PV) generation system, modeling and control strategy of pure green and grid-friendly hybrid power generation system based on hydrogen energy storage and supercapacitor (SC) is proposed in this paper. Aiming at smoothing grid-connected power fluctuations of PV and meeting load demand, the alkaline electrolyzer (AE) and proton exchange membrane fuel cell (PEMFC) and SC are connected to DC bus of photovoltaic grid-connected generation system. Through coordinated control and power management of PV, AE, PEMFC and SC, hybrid power generation system friendliness and active grid-connection are realized. The validity and correctness of modeling and control strategies referred in this paper are verified through simulation results based on PSCAD/EMTDC software platform.  相似文献   

8.
随着光伏发电在电网中渗透率的不断增加,光伏发电功率的不确定性和间歇性引起的光伏并网和弃电问题已引起关注。而采用"光伏+储能"的模式,却能有效缓解这一问题。在考虑储能电池容量衰退和光伏弃电率下,通过对不同光伏子阵配备的不同类型储能电池系统的运行进行仿真模拟,以消除光伏发电随机波动特性对电网的冲击为目的,研究平滑输出场景下分布式储能系统的电池的操作策略,优化储能系统中各储能电池子阵的运行。最后,采用共和地区20 MW (峰值)储能实证基地项目多电池储能系统实际案例对本模拟方法进行了验证。  相似文献   

9.
This research presents an optimum design scheme and a hierarchical energy management strategy for an island PV/hydrogen/battery hybrid DC microgrid (MG). In order to efficiently utilize this DC MG, the optimum structure and sizing scheme are designed by HOMER pro (Hybrid Optimization of Multiple Energy Resources) software. The designed structure of hydrogen MG includes a PV generation, a battery as well as a hydrogen subsystem which composes a fuel cell (FC) system, an electrolyzer and hydrogen tank. To improve the robustness and economy of this DC MG, this study schedules a hierarchical energy management method, including the local control layer and the system control layer. In the local control layer, the subsystems in this DC MG are controlled based on their inherent operating characteristics. And the equivalent consumption minimization strategy (ECMS) is applied in the system control layer, the power flow between the battery and FC is allocated to minimum the fuel consumption. An island DC MG hardware-in-loop (HIL) Simulink platform is established by RT-LAB real-time simulator, and the simulation results are presented to validate the proposed energy management strategy.  相似文献   

10.
This paper presents an analysis of energy production in a pilot building located in Slovenia, which is a typical residential house with an installed photovoltaic (PV) system and pilot battery storage system. Energy management system gathers data from smart meters every 15 min. As the pilot building location is in central Europe, complete energy self-sufficiency cannot be provided. The most problematic period of energy production with photovoltaic systems is winter. Solar radiation during the winter is much lower than in the summer and sometimes snow covers photovoltaic panels and disables energy production. Energy production and energy consumption are analyzed for one year. This study shows that complete self-sufficiency can be achieved by supplementing photovoltaic systems with hydrogen fuel cells. The amount of hydrogen, which would suffice for complete self-sufficiency for the whole period, is calculated according to the analyzed data. A synergy between photovoltaic system and hydrogen fuel cells is a step forward to complete self-sufficiency with renewable energy sources. The share of self-sufficiency of a hybrid PV fuel cell system would be 62.13%, meaning that there is no possibility for complete self-sufficiency from the pilot system. The shortage of hydrogen is 144.24 kg for one year and for achieving complete energy self-sufficiency, PV system should be bigger. A hybrid system with photovoltaic system, battery storage system and hydrogen fuel cells can be a solution for complete self-sufficiency. From an economic point of view, such systems are accessible for commercial use. The initial investment is relatively high, because of the high cost of the hydrogen storage tank.  相似文献   

11.
Proposing a cost-effective off-grid Hybrid Renewable Energy System (HRES) with hydrogen energy storage with a minimum CO2 emission is the main objective of the current study. The electricity demand of an office building is considered to be supplied by Photovoltaic Panels and wind turbines. The office building, modeled in Energy Plus and Open studio, has annual electricity consumption of 500 MWh electricity. 48.9% of the required electricity can be generated via renewable resources. Considering a system without energy storage, the remaining amount of electricity is generated from diesel generators. Hence, for reducing CO2 emission and fuel costs, a hydrogen energy storage system (ESS) is integrated into the system. Hydrogen ESS is responsible for supplying 38.6% of the demand electricity, which means that it can increase the energy supplying ability of the system from 48.9% to 87.5%. In addition to analyzing the application of the hydrogen storage system, the effect of four different kinds of fuel is considered as well. effects of Natural gas, Diesel, Propane, and LPG on the system's application are investigated in this study. Results indicate that natural gas emits less amount of CO2 compared to other fuels and also has a fuel cost of 3054 $/year, while hydrogen ESS is available. For the renewable system without ESS, the fuel cost rises to 10,266 $/year. However, liquid gas, Propane, and LPG have better performance in terms of CO2 emission and fuel cost, respectively.  相似文献   

12.
Hybrid Renewable Energy Systems (HRES) offer alternative energy options that deliver distributed power generation for isolated loads. However, the production of energy from both wind turbines and solar PV systems is weather-dependent. In this study, we developed an innovative Bio-Hydrogen Integrated Renewable Energy System (BHIRES) based on the integration of hydrogen generation from biomass fermentation, renewable energy power generation, hydrogen generation from water electrolysis, a hydrogen storage device, and a fuel cell providing combined heat and power. BHIRES can provide electric power, thermal energy, and hydrogen, with the additional function of processing biomass waste and wastewater. As indicated by results of the economic analysis conducted in this study, the cost of electricity and the average energy cost of using BHIRES are both lower than those for wind/PV/hydrogen HRES. Therefore, this system is ideal for users in remote areas such as islands, and farms in mountainous areas.  相似文献   

13.
In this paper we present firstly the different hybrid systems with fuel cell. Then, the study is given with a hybrid fuel cell–photovoltaic generator. The role of this system is the production of electricity without interruption in remote areas. It consists generally of a photovoltaic generator (PV), an alkaline water electrolyzer, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to manage the system operation of the hybrid system. Different topologies are competing for an optimal design of the hybrid photovoltaic–electrolyzer–fuel cell system. The studied system is proposed. PV subsystem work as a primary source, converting solar irradiation into electricity that is given to a DC bus. The second working subsystem is the electrolyzer which produces hydrogen and oxygen from water as a result of an electrochemical process. When there is an excess of solar generation available, the electrolyzer is turned on to begin producing hydrogen which is sent to a storage tank. The produced hydrogen is used by the third working subsystem (the fuel cell stack) which produces electrical energy to supply the DC bus. The modelisation of the global system is given and the obtained results are presented and discussed.  相似文献   

14.
Photovoltaic (PV) powered pumping systems are relatively simple and reliable, hence they are applied worldwide. Two conventional techniques are curently in use; the first is the directly coupled technique where a PV array is directly coupled to a d.c. motor-pump group, and the second is the battery buffered PV pumping system where a battery is connected across the array to feed the d.c. motor driving a pump. Recently, a third system is proposed to make use of the advantages of the previously mentioned conventional systems. It is the switched mode PV powered pumping system.

The switched mode PV powered pumping system couples the pumping system to the PV array directly when the storage battery is fully charged as explained in Ref. [5]. The objective of such a system is the maximum utilization of available solar radiation to minimize the cost per pumped cubic meter from a given water depth. For a given location, four main parameters affect the design of this system; (1) d.c. motor-pump group parameters, (2) PV array size, (3) battery storage size and (4) water storage tank size. The system designer has to determine the previously mentioned four parameters so that the minimum cost per pumped cubic meter is achieved. It is found that some factors are more effective in reducing the cost than others. The PV array size is the predominant factor, while the battery storage and water tank sizes have relatively less effect. The system installation cost is considered in the detailed economic analysis discussed in this work.  相似文献   


15.
An improved fuzzy-based energy management strategy (EMS) is proposed for a tourist ship used hybrid power system with multiple power sources consisting of fuel cell(FC)/photovoltaic cell(PV)/battery(BAT)/super-capacitor(SC). The power demand from propeller and user terminal is afforded by the power sources connecting to power converters. To obtain more superior performance of the power system, the maximum power point tracking (MPPT) algorithm is employed to optimize the PV. Meanwhile, the improved fuzzy logic control based on dynamic programming (DP) associated with wavelet analysis and PI control are employed to achieve the output power optimal distribution and online control. In particular, the MPPT algorithm can improve the utilization of solar energy, and the SC can well absorb the high frequency power and reduce the fluctuation of the battery and FC that exhibits the potential of their lifetime extension. The FC outputs the high and stable power satisfying the ship's power demand even under the extreme work conditions. The developed model is able to illustrate well in the operation process of the hybrid power system governed by the proposed EMS. In addition, compared with the rule-based strategy, the improved fuzzy-based EMS can reduce 14.39% hydrogen consumption and keep the consistency of battery SOC.  相似文献   

16.
In recent years, hybrid photovoltaic–fuel cell energy systems have been popular as energy production systems for different applications. A typical solar-hydrogen system can be modeled the electricity supplied by PV panels is used to meet the demand directly to the maximum extent possible. If there is any surplus PV power over demand, and capacity left in the tank for accommodating additional hydrogen, this surplus power is supplied to the electrolyser to produce hydrogen for storage. When the output of the PV array is not sufficient to supply the demand, the fuel cell draws on hydrogen from storage and produces electricity to meet the supply deficit.  相似文献   

17.
This paper presents a grid-connected HRES using a hybrid controller with PHS for optimal power flow control and minimizing the production cost. The novelty of the proposed approach is the joined execution of the SSA and CSA named as SSA-CS are apparently a very new metaheuristic algorithm. Moreover, the proposed method is the cost-effective power production of the microgrids and effective utilization of renewable energy sources without wasting the available energy. Here, the energy sources in particular PV system, WT, MT and battery with PHS are utilized to generate the power of the MG system. In the proposed approach, the required power demand of the energy system is predicted by the ANN technique. After that, the production cost minimization is done in view of the anticipated load demand by utilizing the optimization approaches to be a specific SSA-CS algorithm. The result of the proposed approach is actualized in the MATLAB/Simulink working platform. The performance of the proposed approach is examined by comparing the current methodologies such as SSA and PSO with the proposed SSA-CS approach. The simulation results show that the proposed method generates maximum power and furthermore the proposed framework has less production cost in light of the power demand.  相似文献   

18.
This research aims to minimize the cost of the PV system according to minimization of the PV array area and storage battery. In this paper, a new method is used to calculate the minimum number of storage days and the minimum PV array area. The pre-operating time of the diesel-generator is also incorporated in our system design. A system sizing program using FORTRAN language is developed. The program is used to size our experimental system which consists of a PV system, storage subsystem and diesel-generator. The proposed sizing program can be used to size any system. A comparison between stand-alone and hybrid system sizing is presented in this paper.  相似文献   

19.
This paper analyzed the potential implementation of hybrid photovoltaic (PV)/wind turbine/diesel system in southern city of Malaysia, Johor Bahru. HOMER (hybrid optimization model for electric renewable) simulation software was used to determine the technical feasibility of the system and to perform the economical analysis of the system. There were seven different system configurations, namely stand-alone diesel system, hybrid PV–diesel system with and without battery storage element, hybrid wind–diesel system with and without battery storageelement, PV–wind–diesel system with and without storage element, will be studied and analyzed. The simulations will be focused on the net present costs, cost of energy, excess electricity produced and the reduction of CO2 emission for the given hybrid configurations. At the end of this paper, PV–diesel system with battery storage element, PV–wind–diesel system with battery storage element and the stand-alone diesel system were analyzed based on high price of diesel.  相似文献   

20.
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro‐grid; (1) with pumped hydro storage (PHS) as a long‐term ESS, (2) with batteries as a short‐term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (FRES ) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the use of battery and PHS on the electricity cost and FRES are studied. A university campus on a Mediterranean island is selected as a case study. The results show that PV‐wind hybrid system of 8 MW wind and 4.2 MW PV with 89.5 MWh PHS has the highest FRES of 88.0%, and the highest demand supply fraction as 42.6%. Moreover, the results indicate that the economic and technical parameters of RESs are affected significantly by the use of ESSs depending on the type and the capacity of both the RES and the ESS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号