共查询到20条相似文献,搜索用时 10 毫秒
1.
S. Khanmohammadi P. Heidarnejad N. Javani H. Ganjehsarabi 《International Journal of Hydrogen Energy》2017,42(33):21443-21453
In the current study, an integrated renewable based energy system consisting of a solar flat plate collector is employed to generate electricity while providing cooling load and hydrogen. A parametric study is carried out in order to determine the main design parameters and their effects on the objective functions of the system. The outlet temperature of generator, inlet temperature to organic Rankine cycle turbine, solar irradiation intensity , collector mass flow rate and flat plate collector area are considered as five decision variables. The results of parametric study show that the variation of collector mass flow rate between 3 kg/s and 8 kg/s has different effects on exergy efficiency and total cost rate of the system. In addition, the result shows that increment of inlet temperature to the ORC evaporator has a negative effect on cooling capacity of the system. It can lead to a decrease the cooling capacity from 44.29 kW to 22.6 kW, while the electricity generation and hydrogen production rate of the system increase. Therefore, a multi objective optimization is performed in order to introduce the optimal design conditions based on an evolutionary genetic algorithm. Optimization results show that exergy efficiency of the system can be enhanced from 1.72% to 3.2% and simultaneously the cost of the system can increase from 19.59 $/h to 22.28 $/h in optimal states. 相似文献
2.
Haris Ishaq Ibrahim Dincer Greg F. Naterer 《International Journal of Hydrogen Energy》2018,43(19):9153-9164
In this paper, a wind turbine energy system is integrated with a hydrogen fuel cell and proton exchange membrane electrolyzer to provide electricity and heat to a community of households. Different cases for varying wind speeds are taken into consideration. Wind turbines meet the electricity demand when there is sufficient wind speed available. During high wind speeds, the excess electricity generated is supplied to the electrolyzer to produce hydrogen which is stored in a storage tank. It is later utilized in the fuel cell to provide electricity during periods of low wind speeds to overcome the shortage of electricity supply. The fuel cell operates during high demand conditions and provides electricity and heat for the residential application. The overall efficiency of the system is calculated at different wind speeds. The overall energy and exergy efficiencies at a wind speed 5 m/s are then found to be 20.2% and 21.2% respectively. 相似文献
3.
《International Journal of Hydrogen Energy》2020,45(60):34666-34678
Hydrogen is an essential component of power-to-gas technologies that are needed for a complete transition to renewable energy systems. Although hydrogen has zero GHG emissions at the end-use point, its production could become an issue if non-renewable, and pollutant energy and material resources are used in this step. Therefore, a crucial step for the fully developed hydrogen economy is to find alternative hydrogen production methods that are clean, efficient, affordable, and reliable. With this motivation, in this study, an integrated and continuous type of hydrogen production system is designed, developed, and investigated. This system has three components. There is a solar spectral splitting device (Unit I), which splits the incoming solar energy into two parts. Photons with longer wavelength is sent to the photovoltaic thermal hybrid solar collector, PV/T, (Unit II) and used for combined heat and power generation. Then the remaining part is transferred to the novel hybrid photoelectrochemical-chloralkali reactor (Unit III) for simultaneous H2, Cl2, and NaOH production. This system has only one energy input, which is the solar irradiation and five outputs, namely H2, Cl2, NaOH, heat, and electricity. Unlike most of the studies in the literature, this system does not use only PV or only a photoelectrochemical reactor. With this approach, solar energy utilization is maximized, and the wasted portion is minimized. By selecting PV/T rather than PV, the performance of the panels is maximized because recovering the by-product heat as a system output in addition to electricity, and the PV/T has less waste and higher efficiency. The present reactor does not use any additional electron donors, so the wastewater discharge is only depleted NaCl solution, which makes the system significantly cleaner than the ones available in the literature. The specific aim of this study is to demonstrate the optimum operating parameters to reach the maximum achievable production rates and efficiencies while keeping the exergy destruction as little as possible. In this study, there are four case studies, and in each case study, one decision variable is optimized to get the desired performance results. Within the selected operating parameter range, all performance criteria (except exergy destruction) are normalized and ranked for proper comparison. The maximum production rates and efficiencies with the least possible exergy destruction are observed at the operating temperature of 30 °C. At 30 °C, 4.18 g/h H2, 127.55 g/h Cl2, 151 W electricity, and 716 W heat are produced with an exergy destruction rate of 95.74 W and 78% and 30% energy and exergy efficiencies, respectively. 相似文献
4.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(1):78-90
In this paper, we propose an integrated system aiming for hydrogen production with by-products using geothermal power as a renewable energy source. In analyzing the system, an extensive thermodynamic model of the proposed system is developed and presented accordingly. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. Due to the significance of some parameters, the impacts of varying working conditions are also investigated. The results of the energetic and exergetic analyses of the integrated system show that the energy and exergy efficiencies are 39.46% and 44.27%, respectively. Furthermore, the system performance increases with the increasing geothermal source temperature and reference temperature while it decreases with the increasing pinch point temperature and turbine inlet pressure. 相似文献
5.
Organic Rankine Cycle (ORC) is a promising technology for converting the low-grade energy to electricity. This paper presents an investigation on the parameter optimization and performance comparison of the fluids in subcritical ORC and transcritical power cycle in low-temperature (i.e. 80–100 °C) binary geothermal power system. The optimization procedure was conducted with a simulation program written in Matlab using five indicators: thermal efficiency, exergy efficiency, recovery efficiency, heat exchanger area per unit power output (APR) and the levelized energy cost (LEC). With the given heat source and heat sink conditions, performances of the working fluids were evaluated and compared under their optimized internal operation parameters. The optimum cycle design and the corresponding operation parameters were provided simultaneously. The results indicate that the choice of working fluid varies the objective function and the value of the optimized operation parameters are not all the same for different indicators. R123 in subcritical ORC system yields the highest thermal efficiency and exergy efficiency of 11.1% and 54.1%, respectively. Although the thermal efficiency and exergy efficiency of R125 in transcritical cycle is 46.4% and 20% lower than that of R123 in subcritical ORC, it provides 20.7% larger recovery efficiency. And the LEC value is relatively low. Moreover, 22032L petroleum is saved and 74,019 kg CO2 is reduced per year when the LEC value is used as the objective function. In conclusion, R125 in transcritical power cycle shows excellent economic and environmental performance and can maximize utilization of the geothermal. It is preferable for the low-temperature geothermal ORC system. R41 also exhibits favorable performance except for its flammability. 相似文献
6.
Önder Kaşka Ceyhun Yılmaz Onur Bor Nehir Tokgöz 《International Journal of Hydrogen Energy》2018,43(44):20192-20202
In this study, the performance of the combined cooling cycle with the Organic Rankine power cycle, which provides cooling of the hydrogen at the compressor inlet which compresses the constant temperature in the Claude cycle used for hydrogen liquefaction, on the system is examined. The Organic Rankine combined cooling cycle was considered to be using a geothermal source with a flow rate of 120 kg/s at a temperature of 200 °C. The first and second law performance evaluations of the whole system were made depending on the heat energy at different levels taken from the geothermal source. The thermodynamic analysis of the equipment making up the system has been done in detail. The temperature values at which the hydrogen can be effectively cooled were determined in the presented combined system. The efficiency coefficient of the total system was calculated based on varying pre-cooling values. As a result of the study, it was determined that cold entry of hydrogen into the Claude cycle reduced the energy consumption required for liquefaction. Amount of hydrogen cooled to specified temperature increase by increase in mass flow of geothermal water and its temperature. Liquefaction cost is calculated to be 0.995 $/kg H2 and electricity produced by itself is calculated to be 0.025 $/kWh by the new model of liquefaction system. Cost of the liquefaction in the proposed system is about 39.7% lower than direct value of hydrogen liquefaction of 1.650 $/kg given in the literature. 相似文献
7.
《International Journal of Hydrogen Energy》2020,45(41):20944-20955
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions. 相似文献
8.
Yunus Emre Yuksel Murat Ozturk Ibrahim Dincer 《International Journal of Hydrogen Energy》2018,43(9):4233-4243
In this paper, thermodynamic analysis and assessment of a novel geothermal energy based integrated system for power, hydrogen, oxygen, cooling, heat and hot water production are performed. This integrated process consists of (a) geothermal subsystem, (b) Kalina cycle, (c) single effect absorption cooling subsystem and (d) hydrogen generation and storage subsystems. The impacts of some design parameters, such as absorption chiller evaporator temperature, geothermal source temperature, turbine input pressure and pinch point temperature on the integrated system performance are investigated to achieve more efficient and more effective. Also, the impacts of reference temperature and geothermal water temperature on the integrated system performance are studied in detail. The energetic and exergetic efficiencies of the integrated system are then calculated as 42.59% and 48.24%, respectively. 相似文献
9.
Based on available surveys, it has been shown that Iran has substantial geothermal potential in the north and north-western provinces, where in some places the temperature reaches 240 °C. In order to better exploit these renewable resources, it is necessary to study this area. Thus, the aim of this paper is a comparative study of the different geothermal power plant concepts, based on the exergy analysis for high-temperature geothermal resources. The considered cycles for this study are a binary geothermal power plant using a simple organic Rankine cycle (ORC), a binary geothermal power plant using an ORC with an internal heat exchanger (IHE), a binary cycle with a regenerative ORC, a binary cycle with a regenerative ORC with an IHE, a single-flash geothermal power plant, a double-flash geothermal power plant and a combined flash-binary power plant. With respect to each cycle, a thermodynamic model had to be developed. Model validation was undertaken using available data from the literature. Based on the exergy analysis, a comparative study was done to clarify the best cycle configuration. The performance of each cycle has been discussed in terms of the second-law efficiency, exergy destruction rate, and first-law efficiency. Comparisons between the different geothermal power plant concepts as well as many approaches to define efficiencies have been presented. The maximum first-law efficiency was found to be related to the ORC with an IHE with R123 as the working fluid and was calculated to be 7.65%. In contrast, the first-law efficiency based on the energy input into the ORC revealed that the binary cycle with the regenerative ORC with an IHE and R123 as the working fluid has the highest efficiency (15.35%). Also, the maximum first-law efficiency was shown to be given by the flash-binary with R123 as the working fluid and was calculated to be 11.81%. 相似文献
10.
N. Perdikaris K.D. Panopoulos Ph. Hofmann S. Spyrakis E. Kakaras 《International Journal of Hydrogen Energy》2010
The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. 相似文献
11.
A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power 总被引:1,自引:0,他引:1
A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. Unlike a conventional organic Rankine cycle, a supercritical Rankine cycle does not go through the two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process also happens non-isothermally. Both of these features create a potential for reducing the irreversibilities and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle can achieve thermal efficiencies of 10.8-13.4% with the cycle high temperature of 393 K-473 K as compared to 9.7-10.1% for the organic Rankine cycle, which is an improvement of 10-30% over the organic Rankine cycle. When including the heating and condensation processes in the system, the system exergy efficiency is 38.6% for the proposed supercritical Rankine cycle as compared to 24.1% for the organic Rankine cycle. 相似文献
12.
Performance and parametric investigation of a binary geothermal power plant by exergy 总被引:1,自引:0,他引:1
Exergy analysis of a binary geothermal power plant is performed using actual plant data to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy diagram, and compared to the energy diagram. The sites with greater exergy destructions include brine reinjection, heat exchanger and condenser losses. Exergetic efficiencies of major plant components are determined in an attempt to assess their individual performances. The energy and exergy efficiencies of the plant are 4.5% and 21.7%, respectively, based on the energy and exergy of geothermal water at the heat exchanger inlet. The energy and exergy efficiencies are 10.2% and 33.5%, respectively, based on the heat input and exergy input to the binary Rankine cycle. The effects of turbine inlet pressure and temperature and the condenser pressure on the exergy and energy efficiencies, the net power output and the brine reinjection temperature are investigated and the trends are explained. 相似文献
13.
An experimental study is carried out to investigate the performance of a solar Rankine system using supercritical CO2 as a working fluid. The testing machine of the solar Rankine system consists of an evacuated solar collector, a pressure relief valve, heat exchangers and CO2 feed pump, etc. The solar energy powered system can provide electricity output as well as heat supply/refrigeration, etc. The system performance is evaluated based on daily, monthly and yearly experiment data. The results obtained show that heat collection efficiency for the CO2-based solar collector is measured at 65.0–70.0%. The power generation efficiency is found at 8.78–9.45%, which is higher than the value 8.20% of a solar cell. The result presents a potential future for the solar powered CO2 Rankine system to be used as distributed energy supply system for buildings or others. 相似文献
14.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed. 相似文献
15.
Ayhan Atiz Hatice Karakilcik Mustafa Erden Mehmet Karakilcik 《International Journal of Hydrogen Energy》2021,46(1):272-288
In this study, power and hydrogen production performance of an integrated system is investigated. The system consists of an organic Rankine cycle (ORC), parabolic trough solar collectors (PTSCs) having a surface area of 545 m2, middle-grade geothermal source (MGGS), cooling tower and proton exchange membrane (PEM). The final product of this system is hydrogen that produced via PEM. For this purpose, the fluid temperature of the geothermal source is upgraded by the solar collectors to drive the ORC. To improve the electricity generation efficiency, four working fluids namely n-butane, n-pentane, n-hexane, and cyclohexane are tried in the ORC. The mass flow rate of each working fluid is set as 0.1, 0.2, 0.3, 0.4 kg/s and calculations are made for 16 different situations (four types of working fluids and four different mass flow rates for each). As a result, n-butane with a mass flow rate of 0.4 kg/s is found to be the best option. The average electricity generation is 66.02 kW between the hours of 1100-1300. The total hydrogen production is 9807.1 g for a day. The energy and exergy efficiency is calculated to be 5.85% and 8.27%, respectively. 相似文献
16.
In this paper, we propose a novel integrated geothermal absorption system for hydrogen liquefaction, power and cooling productions. The effect of geothermal, ambient temperature and concentration of ammonia-water vapor on the system outputs and efficiencies are studied through energy and exergy analyses. It is found that both energetic and exergetic coefficient of performances (COPs), and amounts of hydrogen gas pre-cooled and liquefied decrease with increase in the mass flow rate of geothermal water. Moreover, increasing the temperature of geothermal source degrades the performance of the quadruple effect absorption system (QEAS), but at the same time it affects the liquefaction production rate of hydrogen gas in a positive way. However, an increase in ambient temperature has a negative effect on the liquefaction rate of hydrogen gas produced as it decreases from 0.2 kg/s to 0.05 kg/s. Moreover, an increase in the concentration of the ammonia-water vapor results in an increase in the amount of hydrogen gas liquefied from 0.07 kg/s to 0.11 kg/s. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(62):26369-26393
Considerable recent ecological and energy concerns have aroused the exploitation of sustainable resources and cost-effective production of green energy carriers such as liquid hydrogen. Despite the remarkable merits of the multi-component refrigerant cycle in enhancing the hydrogen liquefaction process efficiency, it contributes to problematic controllability, increasing investment costs. Moreover, it is not easily possible to keep the composition share of refrigerants in case of leakage. This paper develops an innovative integrated structure for liquid hydrogen production, which benefits from the compression-ejector unit and six cascade multi-component refrigerant cycles in the pre-cooling and liquefaction stages. The Kalina power generation uses wasted heat in the integrated system. A power of 595.6 MW is necessary to produce 22.34 kg/s liquid hydrogen, resulting in specific energy consumption (SEC) of 7.405 kWh/kg LH2 and a coefficient of performance (COP) of 0.103. Besides, the COP of the compression-ejector refrigeration cycle is 0.8682, and the thermal efficiency of the Kalina cycle is 0.1228. The exergy efficiencies of the proposed structure and the ejector-compression refrigeration cycles are 0.2359 and 0.6462, respectively. Heat exchangers take the lion's share of exergy destruction with 39.55%, followed by gas turbines (27.92%) and compressors (21.81%). Based on sensitivity analysis, with the pressure increase in the secondary stream of Ejector1, the SEC increases by 7.435 kWh/kgLH2, and the COP of the ejector-compression refrigeration cycle decreases by 0.8242. As the pressure rises in the Kalina cycle, the SEC declines to a low of 7.4135 kWh/kg LH2 at 26 bar, then increases with pressure. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(45):19481-19501
In the current study, a solar energy power plant integrated with a biomass-based hydrogen production system is investigated. The proposed plant is designed to supply the required energy for the hydrogen production process along with the electrical energy generation. Thermochemical processes are used to obtain high-purity hydrogen from biomass-based syngas. For this purpose, the simulation of the plant is performed using Aspen HYSYS software. Thermodynamic performance evaluation of the hybrid system is conducted with exergy analysis. Based on the obtained results, the exergy efficiencies of the hydrogen production process and power generation systems are 55.8% and 39.6%, respectively. The net power output of the system is obtained to be 38.89 MWe. Furthermore, the amount of produced hydrogen in the integrated system is 7912.5 tons/year with a flow rate of 10.8 tons/h synthesis gas for 7500 h/year operation. Results show that designing and operating a hybrid high-performance energy system using two different renewable sources is an encouraging approach to reduce the environmental impact of energy conversion processes and the effective use of energy resources. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(48):25811-25826
Decentralization of electrical power generation using rooftop solar units is projected to develop to not only mitigate power losses along transmission and distribution lines, but to control greenhouse gases emissions. Due to intermittency of solar energy, traditional batteries are used to store energy. However, batteries have several drawbacks such as limited lifespan, low storage capacity, uncontrolled discharge when not connected to a load and limited number of charge/discharge cycles. In this paper, the feasibility of using hydrogen as a battery is analyzed where hydrogen is produced by the extra diurnal generated electricity by a rooftop household solar power generation unit and utilized in a fuel cell system to generate the required electrical power at night. In the proposed design, two rooftop concentrated photovoltaic thermal (CPVT) systems coupled with an organic Rankine cycle (ORC) are used to generate electricity during 9.5 h per day and the extra power is utilized in an electrolyzer to produce hydrogen. Various working fluids (Isobutane, R134a, R245fa and R123) are used in the ORC system to analyze the maximum feasible power generation by this section. Under the operating conditions, the generated power by ORC as well as its efficiency are evaluated for various working fluids and the most efficient working fluid is selected. The required power for the compressor in the hydrogen storage process is calculated and the number of electrolyzer cells required for the hydrogen production system is determined. The results indicate that the hybrid CPVT-ORC system produces 2.378 kW of electricity at 160 suns. Supplying 65% of the produced electricity to an electrolyzer, 0.2606 kg of hydrogen is produced and stored for nightly use in a fuel cell system. This amount of hydrogen can generate the required electrical power at night while the efficiency of electrolyzer is more than 70%. 相似文献
20.
Bo Chen Zuwei LiaoJingdai Wang Huanjun YuYongrong Yang 《International Journal of Hydrogen Energy》2012
This paper investigates the industrial production of hydrogen through steam methane reforming (SMR) from both exergy efficiency and CO2 emission aspects. An SMR model is constructed based on a practical flow diagram including desulfurizer, furnace, separation unit and heat exchangers. The influence of reformer temperature (Tr) and steam to carbon (S/C) ratio is analyzed to optimize exergy efficiency and CO2 emission. A clear correlation is obtained between exergy efficiency and CO2 emission. Results also show optimal S/C ratio decreases with Tr. An exergy load distribution analysis which evaluates interactions between the system and its subsystems with parameter variations is employed to find promising directions for efficiency improvement. Results show that the greatest improvement lies in increasing efficiency of furnace without increasing its relative exergy load. Integration of oxygen-enriched combustion (OEC) with SMR is also evaluated. The integration of OEC can increase the system efficiency greatly when the reformer operates above critical point, while in other cases the system efficiency may decrease. 相似文献