首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous TiO2/AC, Pt/TiO2 and Pt/TiO2/AC (AC = activated carbon) nanocomposites were synthesized by functionalizing the activated carbon using acid treatment and sol–gel method. Photochemical deposition method was used for Pt loading. The nano-photocatalysts were characterized using XRD, SEM, DRS, BET, FTIR, XPS, CHN and ICP methods. The hydrogen production, under UV light irradiation in an aqueous suspension containing methanol has been studied. The effect of Pt, methanol and activated carbon were investigated. The results show that the activated carbon and Pt together improve the hydrogen production via water splitting. Also methanol acts as a good hole scavenger. Mesoporous Pt/TiO2/AC nanocomposite is the most efficient photocatalyst for hydrogen production compared to TiO2/AC, Pt/TiO2 and the commercial photocatalyst P25 under the same photoreaction conditions. Using Pt/TiO2/AC, the rate of hydrogen production is 7490 μmol (h g catal.)−1 that is about 75 times higher than that of the P25 photocatalyst.  相似文献   

2.
Pt nanoparticles decorated TiO2 nanotubes (Pt/TiO2NTs) modified electrode has been successfully synthesized by depositing Pt in TiO2NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO2NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation.  相似文献   

3.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

4.
Rutile TiO2 nanosheets were prepared by a simple solvothermal process, and Cu was loaded on the surface of TiO2 nanosheets using the in situ photo-deposition method. Meanwhile, photocatalytic H2 evolution from water over the as-prepared TiO2 nanosheets loaded with Cu was explored using methanol as a sacrificial reagent. The results indicate that the TiO2 nanosheets loaded with Cu is an efficient photocatalyst under UV irradiation. During the first 5 h, a rate of H2 evolution of approximately 22.1 mmol g−1 h−1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of Cu, pH of solution, concentration of methanol and dosage of photocatalyst, respectively. At last, the photocatalytic mechanism was preliminarily discussed.  相似文献   

5.
TiO2–CdS nanotubes (NTs) were used for the first time as a support to load metal nanoparticles (NPs) for the hydrolysis of ammonia borane (AB) which is a new strategy. The TiO2–CdS NTs support was first synthesized using a hydrothermal method, and then the CuNi NPs were loaded using a liquid-phase reduction method. The synthesized samples were characterized by XRD, SEM-EDS, TEM, XPS, ICP, UV–Vis, and PL analyses. The characterization results show that the CuNi NPs existed in the form of an alloy with a size of ~1.2 nm and uniformly dispersed on the support. Compared with their single metal counterparts, the bimetallic CuNi-supported catalysts showed a higher catalytic activity in the hydrolysis of AB under visible-light irradiation: Cu0·45Ni0·55/TiO2–CdS catalyst had the fastest hydrogen evolution rate with a high conversion frequency (TOF) of 25.9 molH2·molcat−1 min−1 at 25 °C and low activation energy of 32.8 kJ mol−1. Cu0.45Ni0.55/TiO2–CdS catalyst showed good recycle performance, maintaining 99.3% and 85.6% of the original hydrogen evolution rate even after five and ten recycles, respectively. Strong absorption of visible light, improved electron–hole separation efficiency, and metal synergy between Cu and Ni elements played a crucial role in improving the catalytic hydrolysis performance of AB. The catalyst prepared in this study provides a new strategy for the application of photocatalysts.  相似文献   

6.
This work reports the morphological and photocatalytic hydrogen generation properties of CNT/Pt composites with and without functionalization by carboxylic/oxygen groups. The composites with and without functionalization were named f-CNT/Pt and CNT/Pt, respectively. Several f-CNT/Pt and CNT/Pt composites with different content of Pt NPs (from 0 to 30 wt%) were synthesized and analyzed by scanning electron microscopy (SEM). Those images revealed that the composites without functionalization presented higher agglomerations of Pt nanoparticles (NPs). Furthermore, the average sizes of the Pt NPs in the named f-CNT/Pt composites (2.3–2.9 nm) were lower than these in the CNT/Pt composites (2.5–3.1 nm). The hydrogen generation rates were also calculated from the decomposition of pure water under UV irradiation (365 nm) and found maximum values of 45.4 and 193.9 μmol·h−1 g−1 for the CNT/Pt and f-CNT/Pt composites (they contained 20 wt% of Pt NPs), respectively. Additional experiments for hydrogen generation were achieved using sodium sulfite as sacrificial agent; in this case, a maximum value of 13850 μmol·h−1 g−1 was obtained for the f-CNT/Pt composite. The f-CNT/Pt composites produced more hydrogen than the CNT/Pt composites because they presented higher content of defects; this was confirmed by the Raman spectra. We also showed that the Pt NPs acted as electron trap centers, which delayed the recombination of the photogenerated electrons and holes, this in turn, enhanced the hydrogen generation rates of the composites (the hydrogen generation was maximized by varying the content of Pt NPs deposited on the CNTs). The CNT/Pt composites presented here were simpler and easier to synthesize than the previous published ternary systems based on TiO2, CNTs and Pt NPs.  相似文献   

7.
Photo-assisted hydrogen generation studies of platinum loaded titanium (IV) oxide nanotubes suspended in ethanol–water mixture were carried out at room temperature. The TiO2 nanotubes synthesized by rapid breakdown anodization technique were loaded with Pt nanoparticles by chemical reduction of aqueous chloroplatinic acid solution using sodium borohydride. The chemisorption (active) surface area of the synthesized nanocomposites for hydrogen was measured by pulse chemisorption method using temperature programmed desorption reduction oxidation equipment and found to decrease with increase in platinum loading in the range 1–10 wt%. The platinum supported nanotube composites were characterized for phase and morphology by XRD, TEM and SEM. The hydrogen generated by the photocatalytic reduction of water from water–ethanol mixture at different wavelengths of incident light, using the Pt-TiO2 nanocomposite photocatalyst, was determined by using a proton exchange membrane based hydrogen meter. The highest hydrogen generation efficiency was observed at 1–2.5 wt% of Pt loading. The maximum photocatalytic hydrogen generation of 0.03 mol/h/g of Pt-TiO2 was observed with a 64 W UV light source (λ = 254 nm). The photoluminescence property of the Pt loaded TiO2 has been correlated with the hydrogen generation efficiency and the reaction mechanism briefly discussed.  相似文献   

8.
TiO2 photocatalyst with deposited CuO (CuO-TiO2) was synthesized by the impregnation method using P25 (Degussa) as support, and exhibited high photocatalytic hydrogen generation activity from methanol/water solution. A substantial hydrogen evolution rate of 10.2 ml min−1 (18,500 μmol h−1 g−1catalyst) was observed over this efficient CuO-TiO2 with optimal Cu content of 9.1 mol% from an aqueous solution containing 10 vol% methanol; this improved hydrogen generation rate is significantly higher than the reported Cu-containing TiO2, including some Pt and Pd loaded TiO2. Optimal Cu content of 9.1 mol% provided maximum active sites and allowed good light penetration in TiO2. Over this efficient CuO-TiO2, the hydrogen generation rate was accelerated by increasing the methanol concentration according to Freundlich adsorption isotherm. However, the photocatalytic hydrogen generation rate was suppressed under long time irradiation mainly due to accumulation of by-products, reduction of CuO and copper leaching, which requires further investigation.  相似文献   

9.
A novel perovskite intercalated nanomaterial HLaNb2O7/(Pt, TiO2) is fabricated by successive intercalated reaction of HLaNb2O7 with [Pt(NH3)4]Cl2 aqueous solution, n-C6H13NH2/C2H5OH organic solution and acidic TiO2 colloid solution, followed by ultraviolet light irradiation. The gallery height and the band gap energy of HLaNb2O7/(Pt, TiO2) is less than 0.6 nm and 3.14 eV, respectively. The photocatalytic activity of HLaNb2O7/TiO2 is superior to that of unsupported TiO2 and is enhanced by the co-incorporation of Pt. The photocatalytic hydrogen evolution based on HLaNb2O7/(Pt, TiO2) is 240 cm3 h−1 g−1 using methanol as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. High photocatalytic activity of HLaNb2O7/(Pt, TiO2) may be due to the host with rare earth La element and perovskite structure, the quantum size effect of intercalated semiconductor and the coupling effect between host and guest.  相似文献   

10.
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm2 (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm2 at 1.23 VRHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation.  相似文献   

11.
In this paper, Pt3Ni alloy polyhedral was synthesized through solvothermal method and loaded on the surface of CdS by photo-induced electrons. Under visible light irradiation, the photocatalytic activity for hydrogen evolution from solar water splitting was performed, Pt3Ni/CdS showed the hydrogen evolution rate about 40.0 mmol/h/g (QE = 44.90%, λ = 420 nm), which was 1.8 times higher than that of Pt/CdS, indicating that Pt3Ni NPs could effectively improve the hydrogen production activity of CdS. Next, the influence of de-alloyed Pt3Ni NPs on the activity of CdS for water-splitting under visible light was investigated, the hydrogen evolution rate of de-alloyed Pt3Ni NPs modified CdS was 46.1 mmol/h/g (QE = 52.70%, λ = 420 nm), which was 1.2 times as much as that of Pt3Ni/CdS and 2.1 times as much as that of Pt/CdS, suggesting that de-alloyed Pt3Ni NPs could further enhance the hydrogen production activity of CdS. In addition, the improved photocatalytic activity was mainly due to the surface unsaturation of Pt atoms in a metastable structure after de-alloying, which will expose more surface active sites of Pt, thus the fast electron hole charge transfer at the interface of CdS and de-alloyed Pt3Ni NPs.  相似文献   

12.
The CdS/TiO2 composites were synthesized using titanate nanotubes (TiO2NTs) with different pore diameters as the precursor by simple ion change and followed by sulfurization process at a moderate temperature. Some of results obtained from XRD, TEM, BET, UV–vis and PL analysis confirmed that cadmium sulfide nanoparticles (CdSNPs) incorporated into the titanium dioxide nanotubes. The photocatalytic production of H2 was remarkably enhanced when CdS nanoparticles was incorporated into TiO2NTs. The apparent quantum yield for hydrogen production reached about 43.4% under visible light around λ = 420 nm. The high activity might be attributed to the following reasons: (1) the quantum size effect and homogeneous distribution of CdSNPs; (2) the synergetic effects between CdS particles and TiO2NTs, viz., the potential gradient at the interface between CdSNPs and TiO2NTs.  相似文献   

13.
Large amounts of photocatalysts are needed for the generation of solar hydrogen (H2) and eco-friendly synthetic alternatives are essential. Here, we use glycerol as solvent and reducing agent, and food grade corn starch as stabilizing agent for the preparation of silver nanoparticles (Ag NPs) by microwave irradiation. The Ag NPs were also synthesized using various proportions of glycerol/water mixtures. The Ag NPs were loaded onto commercial TiO2 NPs to study the photogeneration of H2. Characterization was carried out by UV–vis, XRD, TEM, UV–Vis DRS, and RBS. Stable Ag NPs after 320 days of aging with diameters from 2.9 to ~44 nm were prepared under several experimental conditions. Finally, TiO2@AgNPs showed that the rate of evolved H2 is stable, much higher than pure TiO2 NPs and proportional to the amount of Ag NPs loaded. The present study introduces a new sustainable and eco-friendly strategy for designing low-cost photocatalysts for H2 generation.  相似文献   

14.
A photoelectrochemical (PEC) cell with an innovative design for hydrogen generation via photoelectrocatalytic water splitting is proposed and investigated. It consisted of a TiO2 nanotube photoanode, a Pt/C cathode and a commercial asbestos diaphragm. The PEC could generate hydrogen under ultraviolet (UV) light-excitation with applied bias in KOH solution. The Ti mesh was used as the substrate to synthesize the self-organized TiO2 nanotubular array layers. The effect of the morphology of the nanotubular array layers on the photovoltaic performances was investigated. When TiO2 photocatalyst was irradiated with UV-excitation, it prompted the water splitting under applied bias (0.6 V vs. Normal Hydrogen Electrode, NHE.). Photocurrent generation of 0.58 mA/cm2 under UV-light irradiation showed good performance on hydrogen production.  相似文献   

15.
Cheap and efficient photocatalysts were fabricated by simply mixing TiO2 nanoparticles (NPs) and CuO NPs. The two NPs combined with each other to form TiO2/CuO mixture in an aqueous solution due to the opposite surface charge. The TiO2/CuO mixture exhibited photocatalytic hydrogen production rate of up to 8.23 mmol h−1 g−1 under Xe lamp irradiation when the weight ratio of P25 to CuO was optimized to 10. Although the conduction band edge position of CuO NPs is more positive than normal hydrogen electrode, the TiO2/CuO mixture exhibited good photocatalytic hydrogen production performance because of the inter-particle charge transfer between the two NPs. The detailed mechanism of the photocatalytic hydrogen production is discussed. This mixing method does not require a complicated chemical process and allows mass production of the photocatalysts.  相似文献   

16.
An effective improvement of hydrogen evolution from water splitting under solar light irradiation was investigated using quantum dots (QDs) compounds loaded onto a Au/TiO2 photocatalyst. First, Au/TiO2 was prepared by the deposition-precipitation method, and then sulfide QDs were loaded onto the as-prepared Au/TiO2 by a hydrothermal method. QDs were loaded onto Au/TiO2 to enhance the energy capture of visible light and near-infrared light of the solar spectrum. The results indicated that the as-prepared heterojunction photocatalysts absorbed the energy from the range of ultraviolet light to the near-infrared light region and effectively reduced the electron-hole pair recombination during the photocatalytic reaction. Using a hydrothermal temperature of 120 °C, the as-prepared (ZnS–PbS)/Au/TiO2 photocatalyst had a PbS QDs particle size of 5 nm, exhibited an energy gap of 0.92 eV, and demonstrated the best hydrogen production rate. Additionally, after adding 20 wt % methanol as a sacrificial reagent to photocatalyze for 5 h, the hydrogen production rate reached 5011 μmol g−1 h−1.  相似文献   

17.
Titanium iron nitride (Ti0.95Fe0.05N) supports with one-dimensional (1D) hollow and porous nanotubes(Ti0.95Fe0.05N NTs)are prepared by a two-step method, including hydrothermal method followed post-nitriding treatment. Pt nanoparticles (NPs) are further supported on Ti0.95Fe0.05N NTs for methanol electrooxidation. The experimental results reveal that the prepared material is Ti0.95Fe0.05N NTs with high purity, and this support is characterized by a porous tubular structure with hollow walls and large specific surface area. The X-ray photoelectron spectroscopy (XPS) pattern shows the strong interaction between the robust Ti0.95Fe0.05N NTs support and uniform Pt NPs catalyst. In addition, the electrochemical data demonstrate that Ti0.95Fe0.05N NTs loaded Pt NPs (Pt/Ti0.95Fe0.05N) display greatly improved activity and stability than that of Pt/C catalyst. The significantly enhanced durability of the hybrid electrocatalysts and electrochemical surface area (ECSA) preservation of the catalyst are observed after the accelerated durability test (ADT). The experimental data verify that the introducing of Fe can tune the electronic structure of Pt atoms, which contributes to the strengthened activity and stability of the Pt catalyst for the methanol oxidation reaction.  相似文献   

18.
A TiO2 nanotube-based nanoreactor was designed and fabricated by facile two steps synthesis: firstly, hydrothermal synthesized SrTiO3 was deposited on TiO2 nanotubes (TiO2NTs). Secondly, the Au nanoparticles (NPs) were encapsulated inside the TiO2NTs followed by vacuum-assisted impregnation. The as-synthesized composites were characterized using Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Photoluminescence spectra (PL) and Ultraviolet–visible absorption spectroscopy (UV–vis). The photocatalytic performance was evaluated by the hydrogen evolution reaction. The results revealed that the SrTiO3 modified TiO2NTs confined Au NPs (STO-TiO2NTs@Au) achieved an enhanced hydrogen evolution rate at 7200 μmol h−1 g−1, which was 2.2 times higher than that of bald TiO2NTs@Au at 3300 μmol h−1 g−1. The improved photocatalytic activity could be attributed to the synergistic effect of the electron-donating of SrTiO3 and TiO2NTs confinement. The as-designed nanoreactor structure provides an example of efficient carriers' separation photocatalyst.  相似文献   

19.
CuO was introduced into porous TiO2 nanorod through impregnation method. Before the impregnation step, TiO2 nanorod was hydrothermally synthesized from TiO2 powder in aqueous NaOH solution and followed by thermal treatment at 450 °C. The structures and properties of impregnated samples were characterized using various techniques, including XRD, BET, XAS, TEM, and UV-DRS. Their photocatalytic performance on simultaneous hydrogen production from pure water and aqueous methanol solution was also investigated under solar light. It was found that CuO/TiO2 nanorod possessed a high surface area, good photocatalytic property and excellent hydrogen generation activity. Incorporation of Cu ions into the lattice framework of anatase TiO2 nanorod enhanced the efficiency in visible region at 438–730 nm. Moreover, the XAS results showed that some Cu ions formed solid solution in the TiO2 nanorod (CuxT1−xO2). However, the excessive incorporation of Cu ions did not improve any ability of anatase TiO2 nanorod for production of hydrogen from pure water splitting. This could be due to the excessive CuO agglomeration at outside-pores which blocked the sensitization of TiO2 nanorod. Only 1% Cu/TiO2 nanorod was found to be a remarkable and an efficient photocatalyst for hydrogen production under solar light from both pure water and sacrificial methanol splitting. The highest rate of hydrogen production of 139.03 μmol h−1 gcatalyst−1 was found in sacrificial methanol which was 3.24% higher than in pure water.  相似文献   

20.
A new system using Bi2S3-loaded TiO2 photocatalysts (Bi2S3/TiO2) was developed to enhance the production of hydrogen. The Bi2S3 (5, 10, 15 wt%) particles in an urchin-like morphology with a length of about 2∼3 μm and a diameter of 15–20 nm, which can absorb all wavelengths in UV–visible radiation, were prepared by solvothermal method and loaded onto nano-sized TiO2 (10∼15 nm) for photocatalysis on hydrogen production. The evolution of H2 from methanol/water (1:1) photo splitting over the Bi2S3/TiO2 composite in the liquid system was enhanced, compared with that over pure TiO2 and Bi2S3. In particular, 14.2 ml of H2 gas was produced after 12 h when 0.5 g of a 10 wt% Bi2S3/TiO2 composite was used. On the basis of cyclic voltammetry (CV) results, the high photoactivity was attributed to the increase of band gap in the Bi2S3/TiO2 composite, due to the decreased recombination between the excited electrons and holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号