首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 °C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l−1 d−1 gave a maximum hydrogen yield of 0.27 l H2 g COD−1 with a volumetric hydrogen production rate of 9.1 l H2 l−1 d−1 (16.9 mmol l−1 h−1). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 ± 3.5%, 92 ± 3%, 57 ± 2.5% and 78 ± 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l−1 d−1) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME).  相似文献   

2.
The objective of this study was to investigate the enhancement of hydrogen production from alcohol wastewater by adding fermentation residue using an anaerobic sequencing batch reactor (ASBR) under thermophillic operation (55 °C) and at a constant pH of 5.5. The digestibility of the added fermentation residue was also evaluated. For a first set of previous experiments, the ASBR system was operated to obtain an optimum COD loading rate of 50.6 kg/m3 d of alcohol wastewater without added fermentation residue and the produced gas contained 31% H2 and 69% CO2. In this experiment, the effect of added fermentation residue (100–1200 mg/l) on hydrogen production performance was investigated under a COD loading rate of 50.6 kg/m3 d of the alcohol wastewater. At a fermentation residue concentration of 1000 mg/l, the produced gas contained 40% H2 and 60% CO2 without methane and the system gave the highest hydrogen yield and specific hydrogen production rate of 128 ml/g COD removed and 2880 ml/l d, respectively. Under thermophilic operation with a high total COD loading rate (51.8 kg/m3 d) and a short HRT (21 h) at pH 5.5, the ASBR system could only break down cellulose (41.6%) and hemicellulose (21.8%), not decompose lignin.  相似文献   

3.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

4.
Continuous biological hydrogen production from sweet sorghum syrup by mixed cultures was investigated by using anaerobic sequencing batch reactor (ASBR). The ASBR was conducted based on the optimum condition obtained from batch experiment i.e. 25 g/L of total sugar concentration, 1.45 g/L of FeSO4 and pH of 5.0. Feasibility of continuous hydrogen fermentation in ASBR operation at room temperature (30 ± 3 °C) with different hydraulic retention time (HRT) of 96, 48, 24 and 12 hr and cycle periods consisting of filling (20 min), settling (20 min), and decanting (20 min) phases was analyzed. Results showed that hydrogen content decreased with a reduction in HRT i.e. from 42.93% (96 hr HRT) to 21.06% (12 hr HRT). Decrease in HRT resulted in a decrease of solvents produced which was from 10.77 to 2.67 mg/L for acetone and 78.25 mg/L to zero for butanol at HRT of 96 hr-12 hr, respectively. HRT of 24 hr was the optimum condition for ASBR operation indicated by the maximum hydrogen yield of 0.68 mol H2/mol hexose. The microbial determination in DGGE analysis indicated that the well-known hydrogen producers Clostridia species were dominant in the reacting step. The presence of Sporolactobacillus sp. which could excrete the bacteriocins causing the adverse effect on hydrogen-producing bacteria might responsible for the low hydrogen content obtained.  相似文献   

5.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

6.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   

7.
In this study, controlling an anaerobic microbial community to increase the hydrogen (H2) yield during the degradation of lignocelluosic sugars was accomplished by adding linoleic acid (LA) at low pH and reducing the hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR). At pH 5.5 and a 1.7 d HRT, the maximum H2 yield for LA treated cultures fed glucose or xylose reached 2.89 ± 0.18 mol mol−1 and 1.94 ± 0.17 mol mol−1, respectively. The major soluble metabolites at pH 5.5 with a 1.7 day HRT differed between the control and LA treated cultures. A metabolic shift toward H2 production resulted in increased hydrogenase activity in both the xylose (13%) and glucose (34%) fed LA treated cultures relative to the controls. In addition, the Clostridia population and the H2 yield were elevated in cultures treated with LA. A flux balance analysis for the LA treated cultures showed a reduction in homoacetogenic activity which was associated with reducing the Bacteriodes levels from 12% to 5% in the glucose fed cultures and 16% to 10% in the xylose fed cultures. Strategies for controlling the homoacetogens and optimal hydrogen production from glucose and xylose are proposed.  相似文献   

8.
The objective of this study was to investigate the hydrogen production performance from food waste using piggery anaerobic digested residues (PADRs) inoculum. Multiple parameters were evaluated such as organic load rate (OLR), pH, and hydraulic retention time (HRT), over a wide range of values in long-term dark fermentation systems. Results showed that a value of 126.50 mL/gVS·d hydrogen yield was achieved at OLR 6 g VS/L·d under thermophilic condition. A relatively stable structural composition dominated by Thermoanaerobacterium was maintained even suffering from OLR and acid shock. On the contrary, mesophilic fermentation performed acetic acids accumulation and an average hydrogen yield of less than 80 mL/gVS·d. High OLR and low pH (range of 5.0–5.5) led to the establishment of Lactobacillus. Beyond this range, the relative abundance of Olsenella, Streptococcus, and other bacteria showed a significant difference under different operating conditions, which caused weak resistance to external shocks during mesophilic fermentation. It showed that PADRs was capable of obtaining optimal hydrogen production performance under thermophilic condition from food waste with a stable microbial community structure.  相似文献   

9.
In this study, the feasibility of hydrogen production from alcohol distillery wastewater containing high potassium and sulfate was investigated using an anaerobic sequencing batch reactor (ASBR). The seed sludge taken from an anaerobic tank treating the distillery wastewater was boiled for 15 min before being fed to the ASBR. The ASBR system was operated under different feed chemical oxygen demand (COD) values and different COD loading rates at a mesophilic temperature of 37 °C, a controlled pH at 5.5, and a cycle time of 6 cycles per day. When the studied ASBR was operated under the best conditions (providing a maximum hydrogen production efficiency) of a feed COD of 40,000 mg/l, a COD loading rate of 60 kg/m3 d, and a hydraulic retention time of 16 h, the produced gas was found to contain 34.7% H2 and 65.3% CO2, without any methane being detected. Under these best conditions, the specific hydrogen production rate (SHPR) of 270 ml H2/g MLVSS d (or 3310 ml H2/l d), and hydrogen yield of 172 ml H2/g COD removed, were obtained. When the feed COD exceeded 40,000 mg/l, the process performance in terms of hydrogen production decreased because of the potassium and sulfate toxicity.  相似文献   

10.
Anaerobic sequencing batch reactor (ASBR) process offers great potential for H2 production from wastewaters. In this study, an ASBR was used at first time for enhanced continuous H2 production from fungal pretreated cornstalk hydrolysate by Thermoanaerobacterium thermosaccharolyticum W16. The reactor was operated at different hydraulic retention times (HRTs) of 6, 12, 18, and 24 h by keeping the influent hydrolysate constant at 65 mmol sugars L−1. Results showed that increasing the HRT from 6 to 12 h led to the H2 production rate increased from 6.7 to the maximum of 9.6 mmol H2 L−1 h−1 and the substrate conversion reached 90.3%, although the H2 yield remained at the same level of 1.7 mol H2 mol−1 substrate. Taking into account both H2 production and substrate utilization efficiencies, the optimum HRT for continuous H2 production via an ASBR was determined at 12 h. Compared with other continuous H2 production processes, ASBR yield higher H2 production at relatively lower HRT. ASBR is shown to be another promising process for continuous fermentative H2 production from lignocellulosic biomass.  相似文献   

11.
The hydraulic retention time (HRT) is one of the key parameters in biogas processes and often it is postulated that a minimum HRT of 10–25 days is obligatory in continuous stirred tank reactors (CSTR) to prevent a washout of slow growing methanogens. In this study the effects of the reduction of the HRT from 6 to 1.5 days on performance and methanogenic community composition in different systems with and without immobilization operated with simulated thin stillage (STS) at mesophilic conditions and constant organic loading rates (OLR) of 10 g L−1d−1 of volatile solids were investigated. With the reduction of the HRT process instability was first observed in the anaerobic sequencing batch reactor (ASBR) (at HRT of 3 days) followed by the CSTR (at HRT of 2 days). The fixed bed reactor (FBR) was stable until the end of the experiment, but the reduction of the HRT to 1.5 days caused a decrease of the specific biogas production to about 450 L kg−1 of VS compared to about 600 L kg−1 of VS at HRTs of 4–5 days. Methanoculleus and Methanosarcina were the dominant genera under stable process conditions in the CSTR and the ASBR and members of Methanosaeta and Methanospirillum were only present at HRT of 4 days and lower. In the effluent of the FBR Methanosarcina spp. were not detected and Methanosaeta spp. were more abundant then in the other reactors.  相似文献   

12.
Biohydrogen is a promising candidate which can replace a part of our fossil fuels need in day-to-day life due its perceived environmental benefits and availability through dark fermentation of organic substrates. Moreover, advances in biohydrogen production technologies based on organic wastewater conversion could solve the issues related to food security, climate change, energy security and clean development in the future. An evaluation of studies reported on biohydrogen production from different wastewaters will be of immense importance in economizing production technologies. Here we have reviewed biohydrogen production yields and rates from different wastewaters using sludges and microbial consortiums and evaluated the feasibility of biohydrogen production from unexplored wastewaters and development of integrated bioenergy process. Biohydrogen production has been observed in the range of substrate concentration 0.25–160 g COD/L, pH 4–8, temperature 23–60 °C, HRT 0.5–72 h with various types of reactor configuration. The most efficient hydrogen production has been obtained at an organic loading rate (OLR) 320 g COD/L/d, substrate concentration 40 g COD/L, HRT 3 h, pH 5.5–6.0, temperature 35 °C in a continuously-stirred tank reactor system using mixed cultures and fed with condensed molasses fermentation soluble wastewater. The net energy efficiency analysis showed vinasse wastewater has the highest positive net energy gain followed by glycerin wastewater and domestic sewage as 140.39, 68.65, 51.84 kJ/g COD feedstock with the hydrogen yield (HY) of 10 mmol/g COD respectively.  相似文献   

13.
A novel temperature shift strategy has been proposed to overcome an inhibition on hydrogen fermentation of beverage industry wastewater (BW) due to the accumulation of propionic acid (HPr) during continuous reactor operation. The continuous performance at constant pH 5.5, temperature 37 °C and hydraulic retention time (HRT) 8 h with BW concentration of 20 g/Lhexose-equivalent in a stirred tank reactor (2 L) showed an accumulation of HPr to 2.36 g/L leading to a drop in hydrogen production rate (HPR) from 10 to 8.5 L L−1 d−1. To overcome the HPr inhibition, a temperature shift (from 37 °C) to 45 °C for 8 h was applied. This significantly improved the inhibited HPR and HY to 13.6 L L−1 d−1 and 1.68 mol-H2 mol−1 hexose, respectively, with a simultaneous reduction in the HPr concentration to 0.7 g/L. Microbial community analysis based on PCR-DGGE after temperature shift revealed the non-dominance of Selenomonas lacticifex and Bifidobacterium catenulatum (involved in HPr formation), and dominance of hydrogen producing bacteria namely Clostridium butyricum, Clostridium perfringenes, Clostridium acetobutylicum, and Ethanoligenens harbinense. This study demonstrated that temperature shift strategy could overcome the HPr inhibition and significantly improve the hydrogen fermentation of an industrial wastewater.  相似文献   

14.
Hydrogen is a clean energy carrier which can be used as fuel in fuel cells. Today, hydrogen is produced mainly by steam reforming of fossil fuels like natural gas or oil. But only hydrogen produced by renewable sources can be called clean energy production. One possibility for hydrogen production is the biological fermentation of biogenous wastes by hydrogen producing bacteria. For the experimental setup four 30-L-working-volume reactors were constructed for continuous biohydrogen production. As inoculum, heat-treated sludge of a wastewater treatment plant was used. Different hydraulic retention times (HRT) were tested and an organic loading rate (OLR) of 2–14 kg VS/m3*d. As starting substrate, waste sugar medium was used. The pH and other parameters were observed to find boundary conditions for a stable continuous process with a minimum of online-control measurements. The high concentration of organic acids in the reactor led to a very low pH, which was controlled manually and online > 4 up to 5.5, otherwise the biohydrogen production decreased rapidly. The gas amount varied with the different OLRs, but could be stabilised on a high level as well as the hydrogen concentration in the gas with 44–52%. No methane was detected in the gas. It turned out, that continuous biohydrogen production with stable gas amounts and qualities could be achieved at different operation conditions. The results showed, that the operation of a continuous biohydrogen reactor has to be observed very carefully to ensure a constant gas production, and that pH-control is necessary to ensure stable operation conditions.  相似文献   

15.
Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2–24 h), chemical oxygen demand (COD) concentration in wastewater (14–36 g COD/l), pH (4.5–6.0) and temperature (20–55°C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53–61%) and carbon dioxide (37–45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH2/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55°C. The hydrogen yield was in the range of 1.37–2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures.  相似文献   

16.
The objective of this study was to investigate hydrogen production from alcohol wastewater using an anaerobic sequencing batch reactor (ASBR) under thermophilic operation and at a constant pH of 5.5. Under the optimum COD loading rate of 68 kg/m3d, the produced gas contained 43% H2 without methane and the system provided a hydrogen yield and specific hydrogen production rate of 130 ml H2/g COD removed and 2100 ml H2/l d, respectively, which were much higher than those obtained under the mesophilic operation. Under thermophilic operation, both nitrogen and phosphate uptakes were minimal at the optimum COD loading rate for hydrogen production and most nitrogen uptake was derived from organic nitrogen. Under the thermophilic operation for hydrogen production, the nutrient requirement in terms of COD:N:P was found to be 100:6:0.5, which was much higher than that for the methenogenic step for methane production under both thermophilic and mesophilic operations and for the acidogenic step for hydrogen production under mesophilic operation.  相似文献   

17.
Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp.A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3–24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H2/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess.  相似文献   

18.
The aim of this laboratory-scale study was to investigate the long-term anaerobic fermentation of an extremely sour substrate, an energy crop, for continuous production of methane (CH4) as a source of renewable energy. The sugar beet silage was used as the mono-substrate, which had a low pH of around 3.3–3.4, without the addition of manure. The mesophilic biogas digester was operated in a hydraulic retention time (HRT) range between 15 and 9.5 days, and an organic loading rate (OLR) range of between 6.33 and 10 g VS l−1 d−1. The highest specific gas production rate (spec. GPR) and CH4 content were 0.67 l g VS−1 d−1 and 74%, respectively, obtained at an HRT of 9.5 days and OLR of 6.35 g VS l−1 d−1. The digester worked within the neutral pH range as well. Since this substrate lacked the availability of macro and micro nutrients, and the buffering capacity as well, external supplementation was definitely required to provide a stable and efficient operation, as provided using NH4Cl and KHCO3 in this case. The findings of this ongoing long-term fermentation of an extremely acidic biomass substrate without manure addition have reflected crucial information about how to appropriately maintain the operational and particularly the environmental parameters in an agricultural biogas plant.  相似文献   

19.
This study presents the production of biohydrogen from rice mill wastewater. The acid hydrolysis and enzymatic hydrolysis operating conditions were optimized, for better reducing sugar production. The effect of pH and fermentation time on biohydrogen production from acid and enzymatic hydrolyzed rice mill wastewater was investigated, using Enterobacter aerogenes and Citrobacter ferundii. The enzymatic hydrolysis produced the maximum reducing sugar (15.8 g/L) compared to acid hydrolysis (14.2 g/L). The growth data obtained for E. aerogenes and C. ferundii, fitted well with the Logistic equation. The hydrogen yields of 1.74 mol H2/mol reducing sugar, and 1.40 mol H2/mol reducing sugar, were obtained from the hydrolyzate obtained from enzymatic and acid hydrolysis, respectively. The maximum hydrogen yield was obtained from E. aerogenes compared to C. ferundii, and the optimum pH for better hydrogen production was found to be in the range from 6.5 to 7.0. The chemical oxygen demand (COD) reduction obtained was around 71.8% after 60 h of fermentation.  相似文献   

20.
The aim of this study was to promote biohydrogen production in an thermophilic anaerobic fluidized bed reactor (AFBR) at 55 °C using a mixture of sugar cane stillage and glucose at approximately 5000–5300 mg COD L−1. During a reduction in the hydraulic retention time (HRT) from 8, 6, 4, 2 and 1 h, H2 yields of 5.73 mmol g CODadded−1 were achieved (at HRT of 4 h, with organic loading rate of 52.7 kg COD m−3 d−1). The maximum volumetric H2 production of 0.78 L H2 h−1 L−1 was achieved using stillage as carbon source. In all operational phases, the H2 average content in the biogas was between 31.4 and 52.0%. Butyric fermentation was the predominant metabolic pathway. The microbial community in accordance with the DGGE bands profile was found similarity coefficient between 91 and 95% without significant changes in bacterial populations after co-substrate removal. Bacteria like Thermoanaerobacterium sp. and Clostridium sp. were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号