共查询到20条相似文献,搜索用时 0 毫秒
1.
Jung Eun Park Sung-Dae Yim Chang Soo Kim Eun Duck Park 《International Journal of Hydrogen Energy》2014
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol. 相似文献
2.
Ying Wang Li Wang Ning Gan Zi-Yian Lim Chunzheng Wu Jun Peng Wei Guo Wang 《International Journal of Hydrogen Energy》2014
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke. 相似文献
3.
S. Therdthianwong N. SrisiriwatA. Therdthianwong E. Croiset 《International Journal of Hydrogen Energy》2011,36(4):2877-2886
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter. 相似文献
4.
Ying Wang Jun PengChen Zhou Zi-Yian LimChunzheng Wu Shuang YeWei Guo Wang 《International Journal of Hydrogen Energy》2014
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation. 相似文献
5.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2. 相似文献
6.
Cu/ZnO/Al2O3 adsorbents for removal of odorant sulfur compounds were prepared with various Al/Cu molar ratios by co-precipitation method. The sulfur removing ability as a function of Al/Cu molar ratio of the adsorbents for t-butyl mercaptan (TBM), tetrahydro thiophene (THT), dimethyl disulfide (DMS) and H2S were investigated at 250 °C and 6000 h−1 space velocity. Based on the results of adsorption capacity and characterization by various techniques, the optimum Al/Cu ratio for maximum sulfur removal capacity is found to be at Al/Cu molar ratio of 0.15 which possesses the well-dispersed Cu species with high reducibility. The adsorption capacity is highest for H2S followed by TBM, DMS and THT. The main role of Al2O3 component is to provide the dispersion of CuO species homogeneously with small particle formation and high reducibility. 相似文献
7.
B. Roy K. Loganathan H.N. Pham A.K. Datye C.A. Leclerc 《International Journal of Hydrogen Energy》2010
The effect of surface modification of an alumina powder supported nano-scale nickel catalyst used in aqueous-phase reforming of ethanol has been explored in this paper. The Al2O3 powder was prepared by a solution combustion synthesis (SCS) route and the surface of the powder was modified by a non-thermal RF plasma treatment using nitrogen gas. Catalysts were coated by an impregnation method. The performances of the unmodified and modified Ni/Al2O3 catalysts have been compared from a catalytic activity, selectivity, and microstructural point of view. The catalytic activity results showed that while nature, relative ratio and selectivity of the products both in gas and liquid effluents did not change, catalytic activity (in terms of EtOH conversion and H2 yield per g) of the sample increased after plasma modification. Microstructural (XRD, surface area) analysis showed that phase content and surface area of unmodified and modified catalysts are similar, while TEM and H2-chemisorption showed higher metal surface area, higher metal dispersion and lower active metal particle size for the modified sample compared to the unmodified sample. The temperature programmed reduction (TPR) analysis demonstrated stronger support-metal interaction and smaller NiO particles for the modified catalyst at lower heat treatment temperature. The temperature programmed desorption (TPD) of ammonia analysis showed stronger acidity for the modified support, which can explain better dispersion of the metal particles on the modified catalyst compared to the unmodified sample. 相似文献
8.
This study focuses on hydrogen production from the steam reforming of model bio-oil over Ni/Al2O3 catalysts prepared in two different geometries (monolith and pellet) using the dip-coating and wet impregnation methods and characterized using Powder X-Ray diffraction, Temperature Programmed Reduction, Scanning Electron Microscopy (SEM) and BET Surface area analysis. The effects of the catalyst geometry and reforming temperatures were studied by carrying out experiments at the optimal conditions of T = (823, 923, 1023) K and S/C ratio = 13 determined from the thermodynamic analysis of the process prior to the experiments using the process simulator PRO-II. The experimental results showed high steady state H2 yield corresponding to 2.58 and 1.73 mol (out of 5.13 mol) using monolithic and the pelletized catalysts respectively. The product distribution achieved with the monolithic catalyst was closer to the thermodynamic results suggesting a higher selectivity to hydrogen production. 相似文献
9.
S. Liguori A. Iulianelli F. Dalena V. Piemonte Y. Huang A. Basile 《International Journal of Hydrogen Energy》2014
In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 °C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h−1 and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 °C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed. 相似文献
10.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts. 相似文献
11.
Igor Luisetto Simonetta Tuti Elisabetta Di Bartolomeo 《International Journal of Hydrogen Energy》2012
Co/CeO2 (Co 7.5 wt.%), Ni/CeO2 (Ni 7.5 wt.%) and Co–Ni/CeO2 (Co 3.75 wt.%, Ni 3.75 wt.%) catalysts were prepared by surfactant assisted co-precipitation method. Samples were characterized by X-Ray diffraction, BET surface areas measurements, temperature programmed reduction and tested for the dry reforming of methane CH4 + CO2 → 2CO + 2H2 in the temperature range 600–800 °C with a CH4:CO2:Ar 20:20:60 vol.% feed mixture and a total flow rate of 50 cm3 min−1 (GHSW = 30,000 mL g−1 h−1). The bimetallic Co–Ni/CeO2 catalyst showed higher CH4 conversion in comparison with monometallic systems in the whole temperature range, being 50% at 600 °C and 97% at 800 °C. H2/CO selectivity decreased in the following order: Co–Ni/CeO2 > Ni/CeO2 > Co/CeO2. Carbon deposition on spent catalysts was analyzed by thermal analysis (TG-DTA). After 20 h under stream at 750 °C, cobalt-containing catalysts, Co/CeO2 and Co–Ni/CeO2, showed a stable operation in presence of a deposited amorphous carbon of 6 wt.%, whereas Ni/CeO2 showed an 8% decrease of catalytic activity due to a massive presence of amorphous and graphitic carbon (25 wt.%). 相似文献
12.
Şeyma Özkara-Aydınoğlu Emrah Özensoy A. Erhan Aksoylu 《International Journal of Hydrogen Energy》2009
Dry reforming of methane has been studied over Pt/ZrO2 catalysts promoted with Ce for different temperatures and feed compositions. The influence of the impregnation strategy and the cerium amount on the activity and stability of the catalysts were investigated. The results have shown that introduction of 1 wt.% Ce to the Pt/ZrO2 catalyst via coimpregnation method led to the highest catalytic activity and stability. 1 wt.%Ce–1 wt.%Pt/ZrO2 catalyst prepared by sequential impregnation displayed inferior CH4 and CO2 conversion performances with lowest H2/CO production ratios. 1 wt.%Ce–1 wt.%Pt/ZrO2 catalyst prepared by coimpregnation showed the highest activity even for the feed with high CH4/CO2 ratio. The reason for high activity was explained by the intensive interaction between Pt and Ce phases for coimpregnated sample, which had been verified by X-ray photoelectron spectroscopy and Energy Dispersive X-Ray analyses. Strong and extensive Pt–Ce surface interaction results in an increase in the number of Ce3+ sites and enhances the dispersion of Pt. 相似文献
13.
B. Roy U. Martinez K. Loganathan A.K. Datye C.A. Leclerc 《International Journal of Hydrogen Energy》2012
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively. 相似文献
14.
D. San José-Alonso M.J. Illán-GómezM.C. Román-Martínez 《International Journal of Hydrogen Energy》2013
Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition. 相似文献
15.
Huimin LiuDehua He 《International Journal of Hydrogen Energy》2011,36(22):14447-14454
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C. 相似文献
16.
?eyma Özkara-Ayd?no?lu A. Erhan Aksoylu 《International Journal of Hydrogen Energy》2011,36(4):2950-2959
A series of Pt-Ni bimetallic catalysts supported on δ-Al2O3 to be used in carbon dioxide reforming of methane was prepared and tested with the objective of optimizing the Ni/Pt metal composition to obtain high activity and stability. Selected catalyst samples, before and after reaction, were characterized by XRD, XPS, TGA/DTA and SEM-EDS. The activity results showed that the catalytic performance of bimetallic Pt-Ni samples strongly depended on the metal loadings and Ni/Pt loading ratio. Among all the catalysts, 0.3%Pt-10%Ni/Al2O3, which has the lowest Ni/Pt ratio, exhibited the highest catalytic activity and stability. The combined characterization and catalyst performance tests results reveal that low Ni/Pt molar loading ratio of 0.3%Pt-10%Ni/Al2O3 sample led to a relatively easy reduction of nickel oxide species and smaller nano-sized nickel particles having better dispersion caused by the intimate interaction between Pt and Ni sites in the closed vicinity. The changes in the catalysts’ activity and stability under the presence of an additional oxygen source were determined through addition of small amounts of either oxygen or water vapor to the feed stream. The results of the combined dry reforming and partial oxidation tests strongly indicated a change in surface reaction mechanism depending on the Pt load and Ni/Pt ratio of the catalysts. 0.3Pt-10Ni was capable of operating under a variety of feed conditions without significant deactivation suggesting that the catalyst is very promising for synthesis gas production for gas-to-liquid technology. 相似文献
17.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas. 相似文献
18.
Meng-Nan Chen Dong-Yun Zhang Levi T. ThompsonZi-Feng Ma 《International Journal of Hydrogen Energy》2011,36(13):7516-7522
Ag promoted ZnO/Al2O3 catalysts were prepared by using the incipient wetness impregnation method. The catalytic properties of steam reforming reaction for hydrogen production on the prepared catalysts were evaluated with H2O:C2H5OH molar ratios of 3:1 at 450 °C and atmospheric pressure. Ag promoted ZnO/Al2O3 catalysts show higher SRE catalytic activity than ZnO/Al2O3 catalysts. H2 and CH3CHO are the major products on Ag promoted catalysts, and C2H4 is also produced probably due to acid sites on Al2O3. SRE mechanism on Ag promoted ZnO/Al2O3 catalysts, which contains C-C scission, is different from that on ZnO/Al2O3 catalysts. A method based on thermogravimetry (TG), differential scanning calorimetry (DSC) and mass spectrometry (MS) was used to analysis the coking behavior on catalyst surface. The surfaces of Ag promoted ZnO/Al2O3 catalysts show two different types of coking, and suffer higher coke deposition during the steam reforming reaction. 相似文献
19.
Ângelo A.S. Oliveira Rodolfo L.B.A. Medeiros Gilvan P. Figueredo Heloísa P. Macedo Renata M. Braga Fernando V. Maziviero Marcus A.F. Melo Dulce M.A. Melo Marcela M. Vieira 《International Journal of Hydrogen Energy》2018,43(20):9696-9704
This paper presents a new preparation method of a catalytic precursor LaNiO3 perovskite type in one-step using chitosan as a chelating agent. During synthesis La and Ni nitrates were added into a solution containing chitosan, placed into an oven to decompose the reagents and subsequently calcined. The perovskite was characterized by X-ray diffraction (XRD), scanning electron microscopy with chemical microanalysis (SEM-EDS), temperature-programmed reduction (TPR) and thermogravimetric analysis (TGA). The catalytic tests were conducted in a space velocity of 18 Lh?1g?1 at three temperatures: 600, 700 and 800°C. The characterization results indicated the formation above 95% of LaNiO3 phase with good chemical homogeneity at lower temperature with metallic area and dispersion compatible with literature. The catalytic test results showed good levels of CH4 and CO2 conversions and good yields of CO and H2. Therefore, the described method is a simple, fast and low-cost route to prepare LaNiO3 for hydrogen production via dry reforming of methane. 相似文献
20.
Kyoung-Soo Kang Chang-Hee KimWon-Chul Cho Ki-Kwang BaeSung-Woung Woo Chu-Sik Park 《International Journal of Hydrogen Energy》2008
The reduction characteristics of CuFe2O4 and Fe3O4 by methane at 600–900 °C were determined in a thermogravimetric analyzer for the purpose of using CuFe2O4 as an oxidant of two-step thermochemical methane reforming. It was found that the addition of Cu to Fe3O4 largely affected the reduction kinetics and carbon formation in methane reduction. In the case of CuFe2O4, the reduction kinetics was found to be faster than that of Fe3O4. Furthermore, carbon deposition and carbide formation from methane decomposition were effectively inhibited. In case of Fe3O4, Fe metal formed from Fe3O4 decomposed methane catalytically, that lead to the formation of graphite and Fe3C phases. It is deduced that Cu in CuFe2O4 enhanced reduction kinetics, decreased reduction temperature and prevented carbide and graphite formation. Additionally, methane conversion and CO selectivity in the syngas production step with CuFe2O4 were in the range of 33.5–55.6% and 54.9–59.6%, respectively. 相似文献