首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

2.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

3.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

4.
The stability of Mn-promoted Ni/SiO2 catalyst for methane CO2 reforming was investigated comparatively to that of Zr-promoted Ni/SiO2. The catalysts were prepared by the same impregnation method with the same controlled promoter contents and characterized by TPR, XRD, TG, SEM, XPS and Raman techniques. The addition of Mn to Ni/SiO2 catalyst promoted the dispersion of Ni species, leading to smaller particle size of NiO on the fresh Ni–Mn/SiO2 catalyst and the formation of NiMn2O4, which enhanced the interaction of the modified support with Ni species. Thus, the Ni–Mn/SiO2 catalyst showed higher activity and better ability of restraining carbon deposition than Ni/SiO2 catalyst. Besides, it exhibited stable activity at reaction temperatures over the range from 600 °C to 800 °C. However, the introduction of Zr increased the reducibility of Ni–Zr/SiO2, and the catalyst deactivated much more dramatically when the reaction temperature decreased due to its poor ability of restraining carbon deposition, and its activity decreased monotonically with time on stream at 800 °C.  相似文献   

5.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

6.
A mesoporous Ni–Al2O3–ZrO2 aerogel (Ni–AZ) catalyst was prepared by a single-step epoxide-driven sol–gel method and a subsequent supercritical CO2 drying method. For comparison, a mesoporous Al2O3–ZrO2 aerogel (AZ) support was prepared by a single-step epoxide-driven sol–gel method, and subsequently, a mesoporous Ni/Al2O3–ZrO2 aerogel (Ni/AZ) catalyst was prepared by an incipient wetness impregnation method. The effect of preparation method on the physicochemical properties and catalytic activities of Ni–AZ and Ni/AZ catalysts was investigated. Although both catalysts retained a mesoporous structure, Ni/AZ catalyst showed lower surface area than Ni–AZ catalyst. From TPR, XRD, and H2–TPD results, it was revealed that Ni–AZ catalyst retained higher reducibility and higher nickel dispersion than Ni/AZ catalyst. In the hydrogen production by steam reforming of ethanol, both catalysts showed a stable catalytic performance with complete conversion of ethanol. However, Ni–AZ catalyst showed higher hydrogen yield than Ni/AZ catalyst. Superior textural properties, high reducibility, and high nickel surface area of Ni–AZ catalyst were responsible for its enhanced catalytic performance in the steam reforming of ethanol.  相似文献   

7.
Dehydrogenation of organic chemical hydrides has been improved by reconstructing the catalyst in the form of hierarchical porous structure nanocatalyst, in which the economical Ni was adopted as catalytic component and nano Al2O3–TiO2 hybrid composite as support. The Al2O3–TiO2 composite was prepared by spontaneous self-assembly of nano Al2O3 and TiO2 aggregates by hydrolysis of tetra-n-butyl-titanate under continuous agitation. The multi-scaled distribution of Al2O3–TiO2 aggregates with hierarchy could be observed in dynamic light scattering spectrometer. The aggregates are comprised of nano-sized γ-Al2O3 and anatase TiO2 crystallites with sizes of about 5 and 7 nm, respectively. The surface modulation by TiO2 could be verified in FTIR Spectra. The migration of Ti species and crystallite growth were hindered by the Al2O3 skeleton and the hierarchical porous structure was sustained during the thermal related process. The multi-scaled distributed pores were confirmed by both TEM analysis and N2 adsorption results. The results of dehydrogenation experiments showed that the hierarchical porous structure nano Ni/Al2O3–TiO2 exhibited superior catalytic performance to Ni/Al2O3 with the optimum conversion of 99.9% at 400 °C, while the catalyst of Ni/Al2O3 exhibited only 16.5% under the same condition.  相似文献   

8.
Ni‐Co/Al2O3‐ZrO2 nanocatalysts with 5, 10 and 15 wt.% nominal Ni content have been prepared by impregnation followed by a non‐thermal plasma treatment, characterized and tested for dry reforming of methane. For nanocatalysts characterization the following techniques have been used: XRD, FESEM, TEM, EDX dot‐mapping, BET, FTIR and XPS. The dry reforming of methane was carried out at different temperatures (550‐850 °C) using a feed mixture of CH4:CO2 (1:1). Among the nanocatalysts studied, the catalyst with the medium Ni content (10 wt.%) was the most active in dry reforming of methane. This higher activity exhibited by Ni‐Co/Al2O3‐ZrO2 catalyst with medium Ni content (10 wt.% ) can be attributed to small and well dispersed particles of Ni within the catalyst. Apart from the narrow surface particle size distribution in the case of Ni(10 wt.%)‐Co/Al2O3‐ZrO2, the presence of small active components with average size of 7.5 nm is proposed to be the reason for the superior performance of the catalyst. Ni(10 wt.%)‐Co/Al2O3‐ZrO2 nanocatalyst had maximum surface area and the lower surface area was observed in the case of Ni(5 wt.%)‐Co/Al2O3‐ZrO2 and Ni(15 wt.%)‐Co/Al2O3‐ZrO2 due to the formation of the larger agglomeration and higher mean particle size of nickel particles, respectively. Although, GHSV enhancment had inverse effect on product yield but yield reduction for Ni‐Co/Al2O3‐ZrO2 catalyst with 10 wt.% Ni was less drastic at high GHSVs. According to XRD and XPS, existence of NiAl2O4 confirms strong interaction between Ni and support but higher loadings of Ni resulted in less NiAl2O4; loser interaction between support and active phase. Small particles of active components and well‐defined dispersion of them in Ni(10 wt.%)‐Co/Al2O3‐ZrO2 nanocatalyst resulted in stability of the catalyst for either feed conversion or H2/CO molar ratio. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The pine biomass gasification under air and oxygen/steam atmosphere was experimentally studied in a fixed bed reactor. The effects of air flow, gasification temperature, oxygen concentration, steam flow and the catalytic cracking reaction temperature on production distribution were investigated. The results indicate that the H2 content reaches the maximum at the gasification temperature 850 °C for a given air flow. Comparing with air-gasification atmosphere, the lower heating value (LHV) of produced syngas is higher (up to 8.76 MJ/Nm3) under oxygen-enriched gasification atmosphere. And the introduction of steam to the oxygen-enriched gasification leads to a higher H2 content and LHV of produced synthesis gas. Additionally, the syngas content increases significantly with increasing catalytic cracking reaction temperature when Ni–Al2O3 catalyst was employed in catalytic cracking process. The results also reveal that the steam reforming reactions of methane and carbon dioxide are enhanced over Ni–Al2O3 catalyst. The effects of different loading of metal oxide additives to Ni–Al2O3 catalyst on the catalytic activity were discussed, and it is found that the Fe2O3/Ni–Al2O3 catalyst shows the best catalytic activity and the H2 content achieves the maximum value of 39.21 vol.%.  相似文献   

10.
The surfactant-assisted Ni–Al2O3 catalysts are prepared by the homogeneous precipitation method with a surfactant/Al molar ratio ranging from 0.0 to 2.0. It has been investigated the effects of the surfactant on the physicochemical properties and the catalytic activities of the Ni–Al2O3 catalysts. The BET surface area of the catalysts decreases with increasing the surfactant content. The pore volume and pore size of the catalysts increase with increasing the surfactant content. XRD results indicate that all of the catalysts exhibit strong diffraction peaks corresponding to NiO and weak peaks corresponding to NiAl2O4. In the TPR results, the reduction peaks which indicates that the Ni particles strongly interacted with the support are present at between 668 and 688 °C. The activities of the prepared catalysts for methane steam reforming increase with increasing surfactant content in fresh and poisoned state due to an increase of pore volume and pore size.  相似文献   

11.
Steam reforming of methanol was investigated over Cu–ZnO–ZrO2–Al2O3 catalysts at 473 and 573 K. The Cu:Zn:(Al + Zr) molar ratio was 3:3:4; however, the Zr:Al molar ratio was varied and the catalysts were pretreated at different calcination and reduction temperatures. The synthesized catalysts were characterized by N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), X-ray diffraction, oxidized surface TPR, and infrared spectroscopy after carbon monoxide chemisorption. The crystalline size of Cu decreased on increasing the calcination temperatures from 573 to 623 K and increased on increasing the reduction temperatures from 523 to 573 K. Among the tested catalysts, the Cu–ZnO–ZrO2 catalyst exhibited the highest and lowest hydrogen-formation rates at 473 and 573 K, respectively. After the reaction at 573 K, all the tested catalysts exhibited an increase in the Cu crystalline size, causing the catalyst deactivation. Among the tested catalysts, the Cu–ZnO–ZrO2–Al2O3 catalyst, where the Cu:Zn:Al:Zr molar ratio was 3:3:2:2, showed the highest and most stable catalytic activity at 573 K. Cu dispersion and catalyst composition affected the catalytic performance for steam reforming of methanol.  相似文献   

12.
A highly dispersed 50 wt% Ni/MgO–Al2O3 catalyst was prepared by deposition–precipitation (DP) method for the diesel pre-reforming reaction. The pH of the precursor solution was controlled from pH 9.5 to 12.0 to examine the effects on NiO crystallite size and metal dispersion. The increase of pH of the precursor solution causes an increase of specific surface area and metal dispersion, and reduces NiO crystallite size. The pre-reforming reaction was carried out using n-tetradecane as surrogate compound of diesel. The coke formation of used catalysts was examined by TGA, TEM, SEM, and Raman analysis. The 50 wt% Ni/MgO–Al2O3 catalyst prepared at pH 11.5 showed a high catalytic activity and excellent coke resistance due to high metal dispersion (8.71%), small NiO crystallite size (3.5 nm), and strong interaction between Ni and support. Furthermore, this catalyst showed a good stability in the pre-reforming reaction at S/C ratio of 3.5 and 450 °C for 88 h.  相似文献   

13.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

14.
The effect of preparation method on MgO-promoted Ni–Ce0.8Zr0.2O2 catalysts was investigated in CO2 reforming of CH4. Co-precipitated Ni–MgO–Ce0.8Zr0.2O2 exhibited very high activity as well as stability (XCH4 > 95% at 800 °C for 200 h) due to high surface area, high dispersion of Ni, small Ni crystallite size, and easier reducibility. Four elements (Ni, Mg, Ce, and Zr) are located at the same position for the co-precipitated catalyst, resulting in easier reducibility.  相似文献   

15.
Catalysts with high nickel concentrations 75%Ni–12%Cu/Al2O3, 70%Ni–10%Cu–10%Fe/Al2O3 were prepared by mechanochemical activation and their catalytic properties were studied in methane decomposition. It was shown that modification of the 75%Ni–12%Cu/Al2O3 catalyst with iron made it possible to increase optimal operating temperatures to 700–750 °C while maintaining excellent catalyst stability. The formation of finely dispersed Ni–Cu–Fe alloy particles makes the catalysts stable and capable of operating at 700–750 °C in methane decomposition to hydrogen and carbon nanofibers. The yield of carbon nanofibers on the modified 70%Ni–10%Cu–10%Fe/Al2O3 catalyst at 700–750 °C was 150–160 g/g. The developed hydrogen production method is also efficient when natural gas is used as the feedstock. An installation with a rotating reactor was developed for production of hydrogen and carbon nanofibers from natural gas. It was shown that the 70%Ni–10%Cu–10%Fe/Al2O3 catalyst could operate in this installation for a prolonged period of time. The hydrogen concentration at the reactor outlet exceeded 70 mol%.  相似文献   

16.
A Ni–YSZ (Y2O3-stabilized ZrO2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni–YSZ/YSZ/Ni–YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements.  相似文献   

17.
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation.  相似文献   

18.
Mixtures of nickel and metal aluminate (Ni–MAl2O4 [M = Fe, Co, Ni and Cu]) were fabricated, and their electrical conductivities, microstructures and thermal expansions were measured. During the sintering of these mixtures, MAl2O4 reacts with NiO to form NiAl2O4 and MOx which are thought to be the reasons for the differences in the microstructures and electrical properties. Except for FeAl2O4, Ni–MAl2O4 mixtures show metallic conductivity behavior and their electrical conductivities are sufficient for cell operation. Their thermal expansion coefficients are much lower than conventional Ni-YSZ mixtures and closer to the 8YSZ electrolyte. The peak power densities of single cells supported with Ni–NiAl2O4 and Ni–CoAl2O4 are 410 and 440 mW cm−2 at 850 °C, respectively, which are lower than 490 mW cm−2 of Ni-YSZ. This is due to the polarization resistances of functional anode layer. The Ni–CuAl2O4-supported cell has no electrical performance because of Cu migration and segregation.  相似文献   

19.
A coprecipitated Ni–Cu/Al2O3 catalyst was examined in a fluidized bed reactor for the decomposition of methane to COx-free hydrogen and carbon nanofibers using two different reaction temperature schemes, i.e. constant temperature and pre-induction operation. At constant temperatures, the catalyst showed quasi-stable activity below 913 K for a notable time period, while its performance decayed fast above this temperature and a quick deactivation was observed at 1013 K. However, for reaction at 1013 K, the durability was improved if the catalyst was induced for 10 min at 823 K in the reaction atmosphere. A detailed examination of the metal particles after reaction with EDS revealed that the composition of the metal particle depended strongly on the reaction temperature and the induction scheme. The metal particles in the reduced catalyst showed a composition deviation also. The HRTEM micrographs of the carbon–metal interface and the EDS results support the surface migration and ensemble mechanism for carbon formation and give evidence for the reconstruction of the metal particles during the induction period.  相似文献   

20.
Cu/ZnO/Al2O3 adsorbents for removal of odorant sulfur compounds were prepared with various Al/Cu molar ratios by co-precipitation method. The sulfur removing ability as a function of Al/Cu molar ratio of the adsorbents for t-butyl mercaptan (TBM), tetrahydro thiophene (THT), dimethyl disulfide (DMS) and H2S were investigated at 250 °C and 6000 h−1 space velocity. Based on the results of adsorption capacity and characterization by various techniques, the optimum Al/Cu ratio for maximum sulfur removal capacity is found to be at Al/Cu molar ratio of 0.15 which possesses the well-dispersed Cu species with high reducibility. The adsorption capacity is highest for H2S followed by TBM, DMS and THT. The main role of Al2O3 component is to provide the dispersion of CuO species homogeneously with small particle formation and high reducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号