首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequencing of products for mixed-model assembly line in Just-in-Time manufacturing systems is sometimes based on multiple criteria. In this paper, three major goals are to be simultaneously minimized: total utility work, total production rate variation, and total setup cost. A multi-objective sequencing problem and its mathematical formulation are described. Due to the NP-hardness of the problem, a new multi-objective particle swarm (MOPS) is designed to search locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three distinguished multi-objective genetic algorithms (MOGAs), i.e. PS-NC GA, NSGA-II, and SPEA-II. Comparison shows that MOPS provides superior results to MOGAs.  相似文献   

2.
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possible inventories. With the growth in customers’ demand diversification, mixed-model assembly lines have gained increasing importance in the field of management. Among the available criteria used to judge a sequence in MMAL, the following three are taken into account: the minimization of total utility work, total production rate variation, and total setup cost. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a hybrid multi-objective algorithm based on shuffled frog-leaping algorithm (SFLA) and bacteria optimization (BO) are deployed. The performance of the proposed hybrid algorithm is then compared with three well-known genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed hybrid algorithm outperforms the existing genetic algorithms, significantly in large-sized problems.  相似文献   

3.
A mixed-model assembly line (MMAL) is a type of production line where a variety of product models similar to product characteristics are assembled. There is a set of criteria on which to judge sequences of product models in terms of the effective utilization of this line. In this paper, we consider three objectives, simultaneously: minimizing total utility work, total production rate variation, and total setup cost. A multi-objective sequencing problem and its mathematical formulation are described. Since this type of problem is NP-hard, a new multi-objective scatter search (MOSS) is designed for searching locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, in terms of solution quality and diversity level, various test problems are made and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three prominent multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSS outperforms the existing genetic algorithms, especially for the large-sized problems.  相似文献   

4.
Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines.

This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators.

The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.  相似文献   


5.
This paper presents a novel imperialist competitive algorithm (ICA) to a just-in-time (JIT) sequencing problem where variations of production rate are to be minimized. This type of problem is NP-hard. Up to now, some heuristic and meta-heuristic approaches are proposed to minimize the production rates variation. This paper presents a novel algorithm for optimization which inspired by imperialistic competition in real world. Sequences of products where minimize the production rates variation is desired. Performance of the proposed ICA was compared against a genetic algorithm (GA) in small, medium and large problems. Experimental results show the ICA performance against GA.  相似文献   

6.
Nowadays, mixed-model assembly line is used increasingly as a result of customers’ demand diversification. An important problem in this field is determining the sequence of products for entering the line. Before determining the best sequence of products, a new procedure is introduced to choose important orders for entering the shop floor. Thus the orders are sorted using an analytical hierarchy process (AHP) approach based on three criteria: critical ratio of each order (CRo), Significance degree of customer and innovation in a product, while the last one is presented for the first time. In this research, six objective functions are presented: minimizing total utility work cost, total setup cost and total production rate variation cost are the objectives which were presented previously, another objective is minimizing total idle cost, meanwhile two other new objectives regarding minimizing total operator error cost and total tardiness cost are presented for the first time. The total tardiness cost tries to choose a sequence of products that minimizes the tardiness cost for customers with high priority. First, to check the feasibility of the model, GAMS software is used. In this case, GAMS software could not search all of the solution space, so it is tried in two stages and because this problem is NP-hard, particle swarm optimization (PSO) and simulated annealing (SA) algorithms are used. For small sized problems, to compare exact method with proposed algorithms, the problem must be solved using meta-heuristic algorithms in two stages as GAMS software, whereas for large sized problems, the problem can be solved in two ways (one stage and two stages) by using proposed algorithms; the computational results and pairwise comparisons (based on sign test) show GAMS is a proper software to solve small sized problems, whereas for a large sized problem the objective function is better when solved in one stage than two stages; therefore it is proposed to solve the problem in one stage for large sized problems. Also PSO algorithm is better than SA algorithm based on objective function and pairwise comparisons.  相似文献   

7.
In this paper, we propose a hybrid genetic algorithm to solve mixed model assembly line balancing problem of type I (MMALBP-I). There are three objectives to be achieved: to minimize the number of workstations, maximize the workload smoothness between workstations, and maximize the workload smoothness within workstations. The proposed approach is able to address some particular features of the problem such as parallel workstations and zoning constraints. The genetic algorithm may lack the capability of exploring the solution space effectively. We aim to improve its exploring capability by sequentially hybridizing the three well known heuristics, Kilbridge & Wester Heuristic, Phase-I of Moodie & Young Method, and Ranked Positional Weight Technique, with genetic algorithm. The proposed hybrid genetic algorithm is tested on 20 representatives MMALBP-I and the results are compared with those of other algorithms.  相似文献   

8.
Assembly lines play a crucial role in determining the profitability of a company. Market conditions have increased the importance of mixed-model assembly lines. Variations in the demand are frequent in real industrial environments and often leads to failure of the mixed-model assembly line balancing scheme. Decision makers have to take into account this uncertainty. In an assembly line balancing problem, there is a massive amount of research in the literature assuming deterministic environment, and many other works consider uncertain task times. This research utilises the uncertainty theory to model uncertain demand and introduces complexity theory to measure the uncertainty of assembly lines. Scenario probability and triangular fuzzy number are used to describe the uncertain demand. The station complexity was measured based on information entropy and fuzzy entropy to assist in balancing systems with robust performances, considering the influence of multi-model products in the station on the assembly line. Taking minimum station complexity, minimum workload difference within station, maximum productivity as objective functions, a new optimization model for mixed-model assembly line balancing under uncertain demand was established. Then an improved genetic algorithm was applied to solve the model. Finally, the effectiveness of the model was verified by several instances of mixed-model assembly line for automobile engine.  相似文献   

9.
This paper focuses on the scheduling of a single vehicle, which delivers parts from a storage centre to workstations in a mixed-model assembly line. In order to avoid part shortage and to cut down total inventory holding and travelling costs, the destination workstation, the part quantity and the departure time of each delivery have to be specified properly according to predetermined assembly sequences. In this paper, an optimisation model is established for the configuration that only one destination workstation is involved within each delivery. Four specific properties of the problem are deduced, then a backward-backtracking approach and a hybrid GASA (genetic algorithm and simulated annealing) approach are developed based on these properties. Both two approaches are applied to several groups of instances with real-world data, and results show that the GASA approach is efficient even in large instances. Furthermore, the existence of feasible solutions (EOFS) is analysed via instances with different problem settings, which are obtained by an orthodox experimental design (ODE). An analysis of variance (ANOVA) shows that the buffer capacity is the most significant factor influencing the EOFS. Besides this, both the assembly sequence length and distances to workstations also have noticeable impacts.  相似文献   

10.
Particle swarm optimisation (PSO) is an evolutionary metaheuristic inspired by the swarming behaviour observed in flocks of birds. The applications of PSO to solve multi-objective discrete optimisation problems are not widespread. This paper presents a PSO algorithm with negative knowledge (PSONK) to solve multi-objective two-sided mixed-model assembly line balancing problems. Instead of modelling the positions of particles in an absolute manner as in traditional PSO, PSONK employs the knowledge of the relative positions of different particles in generating new solutions. The knowledge of the poor solutions is also utilised to avoid the pairs of adjacent tasks appearing in the poor solutions from being selected as part of new solution strings in the next generation. Much of the effective concept of Pareto optimality is exercised to allow the conflicting objectives to be optimised simultaneously. Experimental results clearly show that PSONK is a competitive and promising algorithm. In addition, when a local search scheme (2-Opt) is embedded into PSONK (called M-PSONK), improved Pareto frontiers (compared to those of PSONK) are attained, but longer computation times are required.  相似文献   

11.
The automated warehouse management requires to fulfill objectives that are usually conflicting with each other. The decisions taken must ensure optimized usage of resources, cost reduction and better customer service. The warehouse replenishment task is a typical example of multi-objective optimization. In this paper, a genetic algorithm with a new crossover operator is developed to solve the replenishment problem. This algorithm is applied to real warehouse data and produces Pareto-optimal permutations of the stored products. A fuzzy rule-base is proposed to increase the diversity of the optimal solutions.  相似文献   

12.
Mixed-model two-sided assembly lines are widely used in a range of industries for their abilities of increasing the flexibility to meet a high variety of customer demands. Balancing assembly lines is a vital design issue for industries. However, the mixed-model two-sided assembly line balancing (MTALB) problem is NP-hard and difficult to solve in a reasonable computational time. So it is necessary for researchers to find some efficient approaches to address this problem. Honey bee mating optimization (HBMO) algorithm is a population-based algorithm inspired by the mating process in the real colony and has been applied to solve many combinatorial optimization problems successfully. In this paper, a hybrid HBMO algorithm is presented to solve the MTALB problem with the objective of minimizing the number of mated-stations and total number of stations for a given cycle time. Compared with the conventional HBMO algorithm, the proposed algorithm employs the simulated annealing (SA) algorithm with three different neighborhood structures as workers to improve broods, which could achieve a good balance between intensification and diversification during the search. In addition, a new encoding and decoding scheme, including the adjustment of the final mated-station, is devised to fit the MTALB problem. The proposed algorithm is tested on several sets of instances and compared with Mixed Integer Programming (MIP) and SA. The superior results of these instances validate the effectiveness of the proposed algorithm.  相似文献   

13.
A Tabu-enhanced genetic algorithm approach for assembly process planning   总被引:9,自引:1,他引:9  
Over the past decade, much work has been done to optimize assembly process plans to improve productivity. Among them, genetic algorithms (GAs) are one of the most widely used techniques. Basically, GAs are optimization methodologies based on a direct analogy to Darwinian natural selection and genetics in biological systems. They can deal with complex product assembly planning. However, during the process, the neighborhood may converge too fast and limit the search to a local optimum prematurely. In a similar domain, Tabu search (TS) constitutes a meta-procedure that organizes and directs the operation of a search process. It is able to systematically impose and release constraints so as to permit the exploration of otherwise forbidden regions in a search space. This study attempts to combine the strengths of GAs and TS to realize a hybrid approach for optimal assembly process planning. More robust search behavior can possibly be obtained by incorporating the Tabus intensification and diversification strategies into GAs. The hybrid approach also takes into account assembly guidelines and assembly constraints in the derivation of near optimal assembly process plans. A case study on a cordless telephone assembly is used to demonstrate the approach. Results show that the assembly process plans obtained are superior to those derived by GA alone. The details of the hybrid approach and the case study are presented.  相似文献   

14.
This research presents a Pareto biogeography-based optimisation (BBO) approach to mixed-model sequencing problems on a two-sided assembly line where a learning effect is also taken into consideration. Three objectives which typically conflict with each other are optimised simultaneously comprising minimising the variance of production rate, minimising the total utility work and minimising the total sequence-dependent setup time. In order to enhance the exploration and exploitation capabilities of the algorithm, an adaptive mechanism is embedded into the structure of the original BBO, called the adaptive BBO algorithm (A-BBO). A-BBO monitors a progressive convergence metric in every certain generation and then based on this data it will decide whether to adjust its adaptive parameters to be used in the next certain generations or not. The results demonstrate that A-BBO outperforms all comparative algorithms in terms of solution quality with indifferent solution diversification.  相似文献   

15.
A two-sided assembly line is a type of production line where tasks are performed in parallel at both sides of the line. The line is often found in producing large products such as trucks and buses. This paper presents a mathematical model and a genetic algorithm (GA) for two-sided assembly line balancing (two-ALB). The mathematical model can be used as a foundation for further practical development in the design of two-sided assembly lines. In the GA, we adopt the strategy of localized evolution and steady-state reproduction to promote population diversity and search efficiency. When designing the GA components, including encoding and decoding schemes, procedures of forming the initial population, and genetic operators, we take account of the features specific to two-ALB. Through computational experiments, the performance of the proposed GA is compared with that of a heuristic and an existing GA with various problem instances. The experimental results show that the proposed GA outperforms the heuristic and the compared GA.  相似文献   

16.
In spite of many studies, investigating balancing and sequencing problems in Mixed-Model Assembly Line (MMAL) individually, this paper solves them simultaneously aiming to minimize total utility work. A new Mixed-Integer Linear Programming (MILP) model is developed to provide the exact solution of the problem with station-dependent assembly times. Because of NP-hardness, a Simulated Annealing (SA) is applied and compared to the Co-evolutionary Genetic Algorithm (Co-GA) from the literature. To strengthen the search process, two main hypotheses, namely simultaneous search and feasible search, are developed contrasting Co-GA. Various parameters of SA are reviewed to calibrate the algorithm by means of Taguchi design of experiments. Numerical results statistically show the efficiency and effectiveness of the proposed SA in terms of both the quality of solution and the time of achieving the best solution. Finally, the contribution of each hypothesis in this superiority is analyzed.  相似文献   

17.
Sequence planning is an important problem in assembly line design. It is to determine the order of assembly tasks to be performed sequentially. Significant research has been done to find good sequences based on various criteria, such as process time, investment cost, and product quality. This paper discusses the selection of optimal sequences based on complexity induced by product variety in mixed-model assembly line. The complexity was defined as operator choice complexity, which indirectly measures the human performance in making choices, such as selecting parts, tools, fixtures, and assembly procedures in a multi-product, multi-stage, manual assembly environment. The complexity measure and its model for assembly lines have been developed in an earlier paper by the authors. According to the complexity models developed, assembly sequence determines the directions in which complexity flows. Thus proper assembly sequence planning can reduce complexity. However, due to the difficulty of handling the directions of complexity flows in optimization, a transformed network flow model is formulated and solved based on dynamic programming. Methodologies developed in this paper extend the previous work on modeling complexity, and provide solution strategies for assembly sequence planning to minimize complexity.  相似文献   

18.
In this paper a different type II robotic assembly line balancing problem (RALB-II) is considered. One of the two main differences with the existing literature is objective function which is a multi-objective one. The aim is to minimize the cycle time, robot setup costs and robot costs. The second difference is on the procedure proposed to solve the problem. In addition, a new mixed-integer linear programming model is developed. Since the problem is NP-hard, three versions of multi-objective evolution strategies (MOES) are employed. Numerical results show that the proposed hybrid MOES is more efficient.  相似文献   

19.
This paper is the second one of the two papers entitled “Modeling and Solving Mixed-Model Assembly Line Balancing Problem with Setups”, which deals with the mixed-model assembly line balancing problem of type I (MMALBP-I) with some particular features of the real world problems such as parallel workstations, zoning constraints and sequence dependent setup times between tasks. Due to the complex nature of the problem, we tackled the problem with bees algorithm (BA), which is a relatively new member of swarm intelligence based meta-heuristics and tries to simulate the group behavior of real honey bees. However, the basic BA simulates the group behavior of real honey bees in a single colony; we aim at developing a new BA, which simulates the group behavior of honey bees in a single colony and between multiple colonies. The multiple colony type of BA is more realistic than the single colony type because of the multiple colony structure of the real honey bees; each colony represents the honey bees living in a different hive and is generated with a different heuristic rule. The performance of the proposed multiple colony algorithm is tested on 36 representatives MMALBP-I extended by adding low, medium and high variability of setup times. The results are compared with single colony algorithms in terms of solution quality and computational times. Computational results indicate that the proposed multiple colony algorithm has superior performance. Part II of the paper also presents optimal solutions of some problems provided by MILP model developed in Part I.  相似文献   

20.
Supply chain network (SCN) design is to provide an optimal platform for efficient and effective supply chain management. It is an important and strategic operations management problem in supply chain management, and usually involves multiple and conflicting objectives such as cost, service level, resource utilization, etc. This paper proposes a new solution procedure based on genetic algorithms to find the set of Pareto-optimal solutions for multi-objective SCN design problem. To deal with multi-objective and enable the decision maker for evaluating a greater number of alternative solutions, two different weight approaches are implemented in the proposed solution procedure. An experimental study using actual data from a company, which is a producer of plastic products in Turkey, is carried out into two stages. While the effects of weight approaches on the performance of proposed solution procedure are investigated in the first stage, the proposed solution procedure and simulated annealing are compared according to quality of Pareto-optimal solutions in the second stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号