首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

2.
This paper aims at studying the effect of hydrogen induction on engine performance, emission and combustion behaviour of a diesel engine fuelled with the emulsion of used palm oil (called as WCO-waste cooking oil) as pilot fuel and hydrogen as primary fuel. A single cylinder water-cooled direct injection diesel engine was tested at 100% and 40% loads. Results were compared with neat diesel, neat WCO and WCO emulsion at both loads in single fuel operation. WCO emulsion in single fuel mode indicated improvement in performance and reduction in all emissions as compared to neat WCO. Dual fuel operation with hydrogen induction further reduced the emissions of smoke HC and CO with WCO as pilot fuel at all power outputs. However, hydrogen induction resulted in reduced thermal efficiency at 40% load. WCO emulsion showed higher ignition delay as compared to neat WCO. Dual fuel operation with hydrogen induction increased the ignition delay further. Heat release pattern showed higher premixed combustion rate with hydrogen induction mainly at high power outputs. Premixed combustion rate became very high at higher rates of hydrogen admission mainly at high power output. In general, hydrogen induction showed superior performance at high power output and inferior performance at low power output with WCO emulsion as injected fuel.  相似文献   

3.
Ignition delay (ID) is one of the important parameters that make influenced on the combustion process inside the cylinder. This ignition delay affects not only the performances but also the noise and emissions of the engine. In this regards the experiments were conducted on single cylinder 4–stroke compression ignition research diesel engine, power 3.50 kW at constant speed 1500 rpm Kirloskar model TV1 with base fuel as diesel and hydrogen as secondary fuel with and without Di-tertiary-butyl-peroxide (DTBP). Experiments were conducted to measure the ignition delay of the dual fuel diesel (DFD) engine at different load conditions and substitution of diesel by hydrogen with or without DTBP and then it was compared with predicted ID given by Hardenberg-Hase equation and modified Hardenberg-Hase equation.The experimental values of ignition delay were compared with theoretical ignition delay which was predicted on the basis of Hardenberg-Hase equation by considering mean cylinder temperature, pressure, activation energy and cetane number and variations are found in between 6.60% and 21.22%. While, the Hardenberg-Hase equation was modified (by considering variation in activation energy) for DFD engine working on diesel as primary fuel and hydrogen as secondary fuel shows variations 1.20%–11.96%. Furthermore, with DTBP it gives variation up to 18.01%. It was found that ID decreases with increase in percentage of DTBP and hydrogen in air-fuel mixture. This might be due to the cetane improver nature of DTBP, pre-ignition reaction rate and energy release rate of hydrogen fuel. The polytropic index get increased by addition of (Di-tert butyl peroxide) DTBP. Similarly, 5% Di tertiary butyl peroxide reduces Ignition delay.  相似文献   

4.
A hydrogen fueled internal combustion engine has great advantages on exhaust emissions including carbon dioxide (CO2) emission in comparison with a conventional engine fueling fossil fuel. In addition, if it is compared with a hydrogen fuel cell, the hydrogen engine has some advantages on price, power density, and required purity of hydrogen. Therefore, they expect that hydrogen will be utilized for several applications, especially for a combined heat and power (CHP) system which currently uses diesel or natural gas as a fuel.A final goal of this study is to develop combustion technologies of hydrogen in an internal combustion engine with high efficiency and clean emission. This study especially focuses on a diesel dual fuel (DDF) combustion technology. The DDF combustion technology uses two different fuels. One of them is diesel fuel, and the other one is hydrogen in this study. Because the DDF engine is not customized for hydrogen which has significant flammability, it is concerned that serious problems occur in the hydrogen DDF engine such as abnormal combustion, worse emission and thermal efficiency.In this study, a single cylinder diesel engine is used with gas injectors at an intake port to evaluate performance swung the hydrogen DDF engine with changing conditions of amount of hydrogen injected, engine speed, and engine loads. The engine experiments show that the hydrogen DDF operation could achieve higher thermal efficiency than a conventional diesel operation at relatively high engine load conditions. However, it is also shown that pre-ignition with relatively high input energy fraction of hydrogen occurred before diesel fuel injection and its ignition. Therefore, such abnormal combustion limited amount of hydrogen injected. Fire-deck temperature was measured to investigate causal relationship between fire-deck temperature and occurrence of pre-ignition with changing operative conditions of the hydrogen DDF engine.  相似文献   

5.
对高速轻型车用柴油机燃用乙醇柴油燃料的放热率和燃烧特性进行了研究,并对多种比例乙醇柴油的排放特性进行了考察。研究表明:在乙醇柴油的十六烷值恢复到原柴油的条件下,乙醇柴油的预混燃烧延长,扩散燃烧缩短,总的燃烧持续期缩短;高负荷下的着火延迟接近柴油,但在中低负荷仍然与柴油有较大的差距;乙醇柴油的最大瞬时放热率低于柴油。在排放方面,乙醇柴油能够同时降低烟度和NOx排放,但在中低负荷下的CO和HC略有上升。  相似文献   

6.
Palm biodiesel is one of the most suitable alternative fuels due to its capability to replace traditional fossil fuel usage in IC engines. Even as palm biodiesel (POBD) reduces harmful pollutant gases, the engine performance is not on an equal scale with neat diesel. To address this shortcoming, an investigation was carried out to examine the application of palm biodiesel (PBD) and hydrogen induction through the intake air at the flow rates of 6 and 8LPM (Litre Per Minute) in the compression ignition (CI) engine. The experimental study shows that POBD has poor engine performance and moderate pollution reduction compared with neat diesel. When compared to POBD and neat diesel, the higher calorific value and other H2 characteristics improve combustion properties, resulting in higher engine performance and lower pollutant gases (except NOx). When compared to the palm biodiesel blend (BD 30), the results of BD30+8LPM reduced the Specific fuel consumption (SFC) by 0.0885kg/kWh and improved the brake thermal efficiency (BTE) by 6.67%. The Carbon monoxide (CO), hydro carbon (HC), and smoke opacity were reduced by 0.047% volume, 29.2 ppm, and 6.52% respectively. A marginal increase in NOx was seen as 297.6 ppm.  相似文献   

7.
The increased focus on alternative fuels research in the recent years are mainly driven by escalating crude oil prices, stringent emission norms and the concern on clean environment. The processed form of vegetable oil (biodiesel) has emerged as a potential substitute for diesel fuel on account of its renewable source and lesser emissions. The experimental work reported here has been carried out on a turbocharged, direct injection, multi-cylinder truck diesel engine fitted with mechanical distributor type fuel injection pump using biodiesel-methanol blend and neat karanji oil derived biodiesel under constant speed and varying load conditions without altering injection timings. The results of the experimental investigation indicate that the ignition delay for biodiesel-methanol blend is slightly higher as compared to neat biodiesel and the maximum increase is limited to 1 deg. CA. The maximum rate of pressure rise follow a trend of the ignition delay variations at these operating conditions. However, the peak cylinder pressure and peak energy release rate decreases for biodiesel-methanol blend. In general, a delayed start of combustion and lower combustion duration are observed for biodiesel-methanol blend compared to neat biodiesel fuel. A maximum thermal efficiency increase of 4.2% due to 10% methanol addition in the biodiesel is seen at 80% load and 16.67 s−1 engine speed. The unburnt hydrocarbon and carbon monoxide emissions are slightly higher for the methanol blend compared to neat biodiesel at low load conditions whereas at higher load conditions unburnt hydrocarbon emissions are comparable for the two fuels and carbon monoxide emissions decrease significantly for the methanol blend. A significant reduction in nitric oxide and smoke emissions are observed with the biodiesel-methanol blend investigated.  相似文献   

8.
Natural gas (NG) is one of the most important and successful alternative fuels for vehicles. Engine combustion and emission fuelled with natural gas have been reviewed by NG/gasoline bi-fuel engine, pure NG engine, NG/diesel dual fuel engine and HCNG engine. Compared to using gasoline, bi-fuel engine using NG exhibits higher thermal efficiency; produces lower HC, CO and PM emissions and higher NOx emission. The bi-fuel mode can not fully exert the advantages of NG. Optimization of structure design for engine chamber, injection parameters including injection timing, injection pressure and multi injection, and lean burn provides a technological route to achieve high efficiency, low emissions and balance between HC and NOx. Compared to diesel, NG/diesel dual fuel engine exhibits longer ignition delay; has lower thermal efficiency at low and partial loads and higher at medium and high loads; emits higher HC and CO emissions and lower PM and NOx emissions. The addition of hydrogen can further improve the thermal efficiency and decrease the HC, CO and PM emissions of NG engine, while significantly increase the NOx emission. In each mode, methane is the major composition of THC emission and it has great warming potential. Methane emission can be decreased by hydrogen addition and after-treatment technology.  相似文献   

9.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

10.
The purpose of this study is to use the hydrogen – diesel mixture in Audi/VW 1.9 TDI turbocharged CI engine equipped with dynamometer and examine the performance and emission indicators by comparing it with sole diesel mode. The recent diesel emission scandals because of manufacturers cheating the laboratory tests, have initiated the discussions about the sustainable and environmentally friendly diesel engines. The CI engine without major engine modifications was set to operate at two speeds of 1900 rpm and 2500 rpm. At each of speed, the experiment was conducted at three BMEP: 0.4 MPa, 0.6 MPa, and 0.8 MPa. The test engine was operated using diesel fuel with amounts of 10 l/min, 20 l/min, and 30 l/min of hydrogen gas, supplied with air into intake manifold before the turbocharger. Relatively low hydrogen fraction (max. 15.74%) has effect on diesel combustion process and performance indicators at the all range of BMEP. The in-cylinder peak pressure at both speeds of 1900 rpm and 2500 rpm was lower than that with pure diesel fuel, as the small amount of hydrogen shortens the CI engine ignition delay period and decreases the rate of pressure rise. The decrease of BTE noticed, and increase of BSFC was registered with low hydrogen fraction (hydrogen amounts of 10 l/min, 20 l/min). However, with increase of hydrogen amount to 30 l/min, the BTE increased and BSFC decreased to the level, which was lower than that at the pure diesel test. The supply of hydrogen positively effects on engine emissions: the smokiness, NOx, CO2, CO decreased, the only hydrocarbon increased. The effect of hydrogen fraction on the combustion and emission characteristics of the diesel - hydrogen mixture was validated by AVL (Anstalt für Verbrennungskraftmaschinen List) BOOST and analysed with presentations of the main limitations and perspectives.  相似文献   

11.
针对某型号直喷柴油机,建立了该柴油机中单缸完整燃烧室及气道三维模型,使用三维计算流体力学(computational fluid dynamics,CFD)分析软件CONVERGE对其进行模拟计算,研究了正丁醇掺混比例对柴油机燃烧排放的影响。结果表明:随着正丁醇掺混比例的提高,峰值缸压、滞燃期和燃烧速度均呈递增趋势,碳烟及CO排放量逐渐减少,NO_x排放量小幅增加。为了进一步改善缸内燃烧情况和降低污染物排放,对正丁醇掺混时喷油策略、燃烧室几何形状的综合影响进行了研究,结果表明:掺混时多次喷油及采用合适的燃烧室模型可以有效改善掺混后缸内油气混合情况,增加缸内湍动能强度,进一步降低碳烟排放量。与纯柴油工况对比,掺混并采用多次喷油策略后碳烟排放明显下降,且通过掺混能够有效简化喷油策略,但弱化了燃烧室形状对碳烟排放量的影响。  相似文献   

12.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

13.
This paper focuses on optimizing the hydrogen TMI (timed manifold injection) system through valve lift law and hydrogen injection parameters (pressure, injection inclination and timing) in order to prevent backfire phenomena and improve the volumetric efficiency and mixture formation quality of a dual fuel diesel engine operating at high load and high hydrogen energy share. This was achieved through a numerical simulation using CFD code ANSYS Fluent, developed for a single cylinder hydrogen-diesel dual fuel engine, at constant engine speed of 1500 rpm, 90% of load and 42.5% hydrogen energy share. The developed tool was validated using experimental data. As a results, the operating conditions of maximum valve lift = 10.60 mm and inlet valve closing = 30 °CA ABDC (MVL10 IVC30) prevent the engine from backfire and pre-ignition, and ensure a high volumetric efficiency. Moreover, a hydrogen start of injection of 60 °CA ATDC (HSOI60) is appropriate to provide a pre-cooling effect and thus, reduce the pre-ignition sources and helps to quench any hot residual combustion products. While, the hydrogen injection pressure of 2.7 bar and an inclination of 60°, stimulate a better quality of hydrogen-air mixture. Afterwards, a comparison between combustion characteristics of the optimized hydrogen-diesel dual fuel mode and the baseline (diesel mode) was conducted. The result was, under dual fuel mode there is an increase in combustion characteristics and NOx emissions as well as a decrease in CO2 emissions. For further improvement of dual fuel mode, retarding diesel start of injection (DSOI) strategy was used.  相似文献   

14.
In this study, experiments were performed on 4 cylinder turbocharged, intercooled with 62.5 kW gen-set diesel engine by using hydrogen, liquefied petroleum gas (LPG) and mixture of LPG and hydrogen as secondary fuels. The experiments were performed to measure ignition delay period at different load conditions and various diesel substitutions. The experimental results have been compared with ignition delay correlation laid down by other researchers for diesel and dual fuel diesel engine. It is found that ignition delay equation based on pressure, temperature and oxygen concentration for a dual fuel diesel engine run on diesel-biogas gives variation up to 6.56% and 14.6% from the present experimental results, while ignition delay equation for a pure diesel engine gives 7.55% and 33.3% variation at lower and higher gaseous fuel concentrations, respectively. It is observed that the ignition delay of dual fuel engine depends not only on the type of gaseous fuels and their concentrations but also on charge temperature, pressure and oxygen concentration.  相似文献   

15.
The aim of this paper is investigation of the effect of hydrogen on engine performance and emissions characteristics of an SI engine, having a high compression ratio, fuelled by HCNG (hydrogen enriched compressed natural gas) blend. The experiments were carried out at 1500, 2000 and 2500 rpm under full load conditions of a modified Isuzu 3.9 L engine, having a compression ratio of 12.5. The engine brake power, brake thermal efficiency, combustion analysis and emissions parameters were realized at 5, 10 15 and 20 deg. CA BTDC (crank angle before top dead center) ignition timings and in excess air ratios of 0.9–1.3 fuelled by hydrogen enriched compressed natural gas (100/0, 95/5, 90/10 and 80/20 of % natural gas/hydrogen).The experimental results showed that the maximum power values were generally obtained with HCNG5 (5% hydrogen in natural gas) fuel. The optimum ignition timing that was obtained according to the maximum brake torque was retarded by the addition of hydrogen to CNG (compressed natural gas), while it was advanced by increasing the engine speed. Furthermore, it was observed that the BTE (brake thermal efficiency) generally declined with the hydrogen addition to compressed natural gas and increasing the engine speed. Additionally, the curves of cylinder pressure and ROHR (rate of heat release values) generally closed to top dead center with the increasing of the hydrogen fraction in the blend and a decreasing engine speed. The hydrocarbon and carbon monoxide emissions generally obtained were lower than the Euro-5 and Euro-6 standards.  相似文献   

16.
The paper presents an experimental investigation of hydrogen-diesel fuel co-combustion carried out on a naturally aspirated, direct injection diesel engine. The engine was supplied with a range of hydrogen-diesel fuel mixture proportions to study the effect of hydrogen addition (aspirated with the intake air) on combustion and exhaust emissions. The tests were performed at fixed diesel injection periods, with hydrogen added to vary the engine load between 0 and 6 bar IMEP. In addition, a novel in–cylinder gas sampling technique was employed to measure species concentrations in the engine cylinder at two in–cylinder locations and at various instants during the combustion process.  相似文献   

17.
The present study highlights the influence of fuel injection pressure (FIP) and fuel injection timing (FIT) of Jatropha biodiesel as pilot fuel on the performance, combustion and emission of a hydrogen dual fuel engine. The hydrogen flow rates used in this study are 5lit/min, 7lit/min, and 9lit/min. The pilot fuel is injected at three FIPs (500, 1000, and 1500 bar) and at three FITs (5°, 11°, and 17?bTDC). The results showed an increase in brake thermal efficiency (Bth)from 25.02% for base diesel operation to 32.15% for hydrogen-biodiesel dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FITof17?bTDC. The cylinder pressure and heat release rate (HRR) are also found to be higher for higher FIPs. Advancement in FIT is found to promote superior HRR for hydrogen dual fuel operations. The unburned hydrocarbon (UHC) and soot emissions are found to reduce by 59.52% and 46.15%, respectively, for hydrogen dual fuel operation with 9lit/min flow rate at a FIP of 1500 bar and a FIT of 11?bTDC. However, it is also observed that the oxides of nitrogen (NOX) emissions are increased by 20.61% with 9lit/min hydrogen flow rate at a FIP of 1500 bar and a FIT of 17?bTDC. Thus, this study has shown the potential of higher FIP and FIT in improving the performance, combustion and emission of a hydrogen dual fuel engine with Jatropha biodiesel as pilot fuel.  相似文献   

18.
Biogas valorization as fuel for internal combustion engines is one of the alternative fuels, which could be an interesting way to cope the fossil fuel depletion and the current environmental degradation. In this circumstance, an experimental investigation is achieved on a single cylinder DI diesel engine running under dual fuel mode with a focus on the improvement of biogas/diesel fuel combustion by hydrogen enrichment. In the present investigation, the mixture of biogas, containing 70% CH4 and 30% CO2, is blended with the desired amount of H2 (up to 10, 15 and 20% by volume) by using MTI 200 analytical instrument gas chromatograph, which flow thereafter towards the engine intake manifold and mix with the intake air. Depending on engine load conditions, the volumetric composition of the inducted gaseous fraction is 20–50% biogas, 2–10% H2 and 45–78% air. Near the end of the compression stroke, a small amount of diesel pilot fuel is injected to initiate the combustion of the gas–air mixture. Firstly, the engine was tested on conventional diesel mode (baseline case) and then under dual fuel mode using the biogas. Consequently, hydrogen has partially enriched the biogas. Combustion characteristics, performance parameters and pollutant emissions were investigated in-depth and compared. The results have shown that biogas enriched with 20% H2 leads to 20% decrease of methane content in the overall exhaust emissions, associated with an improvement in engine performance. The emission levels of unburned hydrocarbon (UHC) and carbon monoxide (CO) are decreased up to 25% and 30% respectively. When the equivalence ratio is increased, a supplement decrease in UHC and CO emissions is achieved up to 28% and 30% respectively when loading the engine at 60%.  相似文献   

19.
Using nonedible waste frying oil (WFO) as biodiesel and hydrogen in the mix composition may partly replace significant quantities of diesel fuel and help reduce fossil fuel reliance. The combination of diesel fuel, waste-fired biodiesel, and hydrogen gas can improve the performance, combustion, and emissions of single-fuel and dual-fuel diesel engines. This may lead to a novel alternative fuel mix pattern and modification for diesel engines, which is the research gap. Although there has been some research on waste-fired biodiesel and hydrogen gas-powered dual-fuel engines with the goal of partly replacing fossil fuels to a larger degree, there has been very little progress in this area. As a result, the current research effort focuses on using diesel fuel (100%, 30%, and 60%), waste-fired biodiesel (at 100%, 70%, and 40%), and hydrogen gas as fuel sources (5 and 10 liters per minute [LPM]). According to the current experiment, it was perceived in both dual-fuel and single-fuel modes. Under duel-fuel mode, the engine results for WFOB70D30 + H10 fuel blend had higher 4.2% (brake thermal efficiency [BTE]), 19.72% (oxides of nitrogen [NOx]), and 9.09% (ignition delay [ID]) with a minimal range of (in-cylinder pressure, MFB, volumetric efficiency and heat release rate [HRR]) and a dropped rate of 4.34% (brake-specific energy consumption [BSEC]), 33.33% (carbon monoxide [CO]), 39.28% (hydrocarbons [HC]), 9.43% (smoke), and 6.97% (combustion duration [CD]) related to diesel fuel at peak load. However, single-fuel powered diesel engines provide minimal performance for the WFOB40D60 fuel blend with (11.32% lower BTE and 2.04% higher BSEC) and minimal rate of combustion (lower cylinder pressure, 2.12% minimal CD, 14.72% higher ID, minimal HRR combustion, volumetric efficiency, and MFB). Emitted fewer emissions (9.09% less CO, 4.87% less HC, 0.92% higher NOx, and 1.69% more smoke) than diesel fuel at peak load. Therefore, it was concluded that adding 10 LPM of hydrogen gas to the biodiesel under a dual-fuel condition leads to better combustion, better performance, and less pollution than the single-fuel mode of operation.  相似文献   

20.
Energy is an essential prerequisite for economical and social growth of any country. Skyrocketing of petroleum fuel cost s in present day has led to growing interest in alternative fuels like CNG, LPG, Producer gas, Biogas in order to provide suitable substitute to diesel for a compression ignition engine. This paper discusses some experimental investigations on dual fuel operation of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set diesel engine with hydrogen, producer gas (PG) and mixture of producer gas and hydrogen as secondary fuels. Results on brake thermal efficiency and emissions, namely, un-burnt hydrocarbon (HC), carbon monoxide (CO), and NOx are presented here. The paper also contains vital information relating to the performances of an engine at a wide range of load conditions with different gaseous fuel substitutions. When only hydrogen is used as secondary fuel, maximum increase in the brake thermal efficiency is 7% which is obtained with 20% of secondary fuel. When only producer gas is used as secondary fuel, maximum decrease in the brake thermal efficiency of 8% is obtained with 30% of secondary fuel. Compared to the neat diesel operation, proportion of un-burnt HC and CO increases, while, emission of NOx reduces in all Cases. On the other hand, when 40% of mixture of producer gas and hydrogen is used (in the ratio (60:40) as secondary fuel, brake thermal efficiency reduces marginally by 3%. Further, shortcoming of low efficiency at lower load condition in a dual fuel operation is removed when a mixture of hydrogen and producer gas is used as the secondary fuel at higher than 13% load condition. Based on the performance studied, a mixture of producer gas and hydrogen in the proportion of 60:40 may be used as a supplementary fuel for diesel conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号