首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead–acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC–DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.  相似文献   

2.
This paper presents a model of a hybrid electric vehicle, based on a primary proton exchange membrane fuel cell (PEMFC) and an auxiliary Li-ion battery, and its dynamics and overall performance. The power voltage from the fuel cell is regulated by a DC/DC converter before integrating with the Li-ion battery, which provides energy to the drive motor. The driving force for propelling the wheels comes from a permanent magnet synchronous motor (PMSM); where the power passes through the transmission, shaft, and the differential.  相似文献   

3.
In order to analyze the driving stability of a plug-in fuel cell vehicle (PFCV), a computer-aided simulator for PFCVs has been developed. PFCVs have been introduced around the world to achieve early commercialization of an eco-friendly and highly efficient fuel cell vehicle. The plug-in option, which allows the battery to be recharged from the electricity grid, enables a reduction in size of the fuel cell system (FCS) and an improvement of its durability. As such, the existing limitations of the fuel cell - such as its high cost, poor durability, and the insufficient hydrogen infrastructure – can be overcome. During the design phase of PFCV development, simulation-based driving stability test is necessary to determine the sizes of the electric engine of the FCS and the battery. The developed simulator is very useful for analyzing the driving stability of the PFCV with respect to the capacities of the FCS and battery. The simulation results are in fact very close to those obtained from a real system, since the estimation accuracy of PFCV component models used in this simulator, such as the fuel cell stack, battery, electric vehicle, and the other balance of plants (BOPs), are verified by the experiments, and the simulator uses the newly-proposed power distribution control logic and the pre-confirmed real driving schedule. Using these results, we can study which one will be the best in terms of driving stability.  相似文献   

4.
Experimental results were recently reported regarding a novel “non-flooding” hybrid fuel cell consisting of proton exchange membrane (PEM) and anion exchange membrane (AEM) half-cells on opposite sides of a water-filled, porous intermediate layer. Product water formed in the porous layer, where it could permeate to the exterior of the cell, rather than at the electrodes. Although electrode flooding was mitigated, the reported power output was low. To investigate the potential for increased power output, a physicochemical charge transport model of the porous electrolyte layer is reported here. Traditional electrochemical modeling was generalized in a novel way to consider both ion transport and reaction in the aqueous phase and electronic conduction in the graphitic scaffold using a unified Poisson–Nernst–Planck framework. Though the model used no arbitrary or fitting parameters, the ionic resistance calculated for the porous layer agreed well with the highly non-Ohmic experimental values previously reported for the entire fuel cell. Interestingly, electronic charge carriers in the scaffold were found to obviate the need for counterion presence in this unique electrolyte structure. Still, the thickness- and temperature-dependent model results offer limited prospects for improving the power output.  相似文献   

5.
The harmful consequences of pollutants emitted by conventional fuel cars have prompted vehicle manufacturers to shift towards alternative energy sources. Currently, fuel cells (FCs) are commonly regarded as highly efficient and non-polluting power sources capable of delivering far greater energy densities and energy efficiency than conventional technologies. Proton exchange membrane fuel cells (PEMFC) are viewed as promising in transportation sectors because of their ability to start at cold temperatures and minimal emissions. PEMFC is an electrochemical device that converts hydrogen and oxidants into electricity, water, and heat at various temperatures. The pros and cons of the technology are discussed in this article. Various fuel cell types and their applications in the portable, automobile, and stationary sectors are discussed. Additionally, recent issues associated with existing fuel cell technology in the automobile sector are reviewed.  相似文献   

6.
The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.  相似文献   

7.
This paper investigates the effects of cathode gases containing chloride ions on the proton exchange membrane fuel cell (PEMFC) performance. Chloride solutions are vaporized using an ultrasonic oscillator and mixed with oxygen/air. The salt concentration of the mixed gas in the cathode is set by varying the concentration of the chloride solution. Five-hour tests show that an increase in the concentration of sodium chloride did not significantly affect the cell performance of the PEMFC. It is found that variations in the concentration of chloride do not show significant influence on the cell performance at low current density operating condition. However, for high current density operating conditions and high calcium chloride concentrations, the chloride ion appears to have a considerable effect on cell performance. Experimental results of 108-h tests indicate that the fuel cell operating with air containing calcium chloride has a performance decay rate of 3.446 mV h−1 under the operating condition of current density at 1 A/cm2. From the measurements of the I-V polarization curves, it appears that the presence of calcium chloride in the cathode fuel gas affects the cell performance more than sodium chloride does.  相似文献   

8.
Examined were the effects of the clamping pressure on the performance of a proton exchange membrane (PEM) fuel cell. The electro-physical properties of the gas diffusion layer (GDL) such as porosity, gas permeability, electrical resistance and thickness were measured using a special-designed test rig under various clamping pressure levels. Correlations for the gas permeability of the GDL were developed in terms of the clamping pressure. In addition, the contact resistance between the GDL and the bipolar (graphite) plate was measured under various clamping pressures. Results showed that at the low clamping pressure levels (e.g. <5 bar) increasing the clamping pressure reduces the interfacial resistance between the bipolar plate and the GDL that enhances the electrochemical performance of a PEM fuel cell. In contrast, at the high clamping pressure levels (e.g. >10 bar), increasing the clamping pressure not only reduces the above Ohmic resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers. Comprising the above two effects did not promote the power density too much but reduce the mass-transfer limitation for high current density.  相似文献   

9.
This paper proposes a novel fuzzy controller based on an adaptive membership function for optimum power management of a fuel cell hybrid electric vehicle (FCHEV). In the first phase, an electric powertrain model of the FCHEV is derived and a fuzzy controller is proposed. Then, the fuzzy controller is optimized using a genetic algorithm. The optimization process is accomplished through simulation for a given driving cycle. Since, however, the optimized result may vary according to the applied driving cycle for optimization, it is impossible for one optimized result to cover various driving cycles. In the second phase, an adaptive membership function based on a stochastic approach is proposed to guarantee optimum performance from the presented fuzzy controller, even though the driving cycle changes. This controller is referred to as the ‘Stochastic fuzzy controller’ (SFC) in this study. The SFC employs a stochastic approach where membership functions can be transformed statistically using a probability evaluated from driving pattern recognition. Then, driving cycle analysis is performed through off-line simulation and hardware in a loop simulation (HILS) test for four driving cycles. Finally, the SFC shows the best performance in terms of minimum fuel consumption and state-of-charge (SoC) maintenance.  相似文献   

10.
Boeing Research & Technology Europe has designed, developed and subsequently bench and flight tested, in a wide range of different operative conditions, an electric Unmanned Air Vehicle (UAV) powered by a hybrid energy source. The energy source features a 200 We Polymer Electrolyte Membrane (PEM) fuel cell system fed by a chemical hydride hydrogen generator that produces highly pure hydrogen at the fuel cell operating pressure from the controlled hydrolysis of Sodium Borohydride (NaBH4), resulting in 900 Wh of energy from 1 L of chemical solution. Equipped also with high specific energy Lithium Polymer batteries, this fuel cell powered UAV is able to achieve flight durations close to 4 h.This paper summarizes the aircraft and systems design, the results of the bench and flight tests along with the main challenges faced during this development and the lessons learned for future optimization.  相似文献   

11.
Automotive hydrogen polymer electrolyte membrane (PEM) fuel cell systems require periodic purges to remove nitrogen and water from the anode. Purging increases system performance by limiting anode hydrogen dilution, but reduces hydrogen utilization. State of the art fuel cell membrane electrode assemblies utilize thin ionomer membranes in an effort to increase performance and reduce cost. Thinner membranes also increase the required anode purge rates due to the increased transport of inert gases. A model was developed to examine the relationship between membrane thickness and vehicle range which takes into account anode purge rate. The model includes changes in efficiency and hydrogen utilization as a function of PEM thickness for a variety of operating conditions. The model predicts that an optimal membrane thickness which maximizes vehicle range exists, but this thickness is highly dependent on other system conditions. The results of this study can be extended to help optimize stack development and balance of plant design.  相似文献   

12.
An optimal design of a three-component hybrid fuel cell electric vehicle comprised of fuel cells, battery, and supercapacitors is presented. First, the benefits of using this hybrid combination are analyzed, and then the article describes an active power-flow control strategy from each energy source based on optimal control theory to meet the demand of different vehicle loads while optimizing total energy cost, battery life and other possible objectives at the same time. A cost function that minimizes the square error between the desired variable settings and the current sensed values is developed. A gain sequence developed compels the choice of power drawn from all devices to follow an optimal path, which makes trade-offs among different targets and minimizes the total energy spent. A new method is introduced to make the global optimization into a real-time based control. A model is also presented to simulate the individual energy storage systems and compare this invention to existing control strategies, the simulation results show that the total energy spent is well saved over the long driving cycles, also the fuel cell and batteries are kept operating in a healthy way.  相似文献   

13.
In the present research, a commercial battery-powered pure electric vehicle was suitably modified to convert it into a hybrid one integrating a PEMFC stack. The hydrogen supply system to the stack included a passive recirculation system based on a Ventury-type ejector. Besides, in order to achieve an optimum operation of the PEMFC stack, a discrete state machine model was considered in its control system. The inclusion of a rehabilitation operating mode prevented the stack from possible failures, increasing its lifetime. It was verified that for the rated operating point when supplying power to the vehicle (2.5 kW) the hydrogen consumption decreased, and the actual efficiency (47.9%) PEMFC was increased close to 1%. Field tests performed demonstrate that the range of the hybrid electric vehicle was increased by 78% when compared to the one of the original battery electric car. Also, under the tested experimental conditions in hybrid mode, 34% of the total energy demanded by the electric machine of the vehicle was supplied by the PEMFC stack.  相似文献   

14.
The catalyst layer (CL) of a polybenzimidazole (PBI) membrane electrode assembly (MEA) consists of Pt–C (Pt on a carbon support), PBI, and H3PO4. Two series of catalyst ink solutions each containing Pt–C, N,N′-dimethyl acetamide, and PBIs comprising four different molecular weights (MWs) (i.e., Mw = 1.1 × 104, 4.4 × 104, 9.0 × 104, and 17.4 × 104 g mol−1) are used to fabricate CLs. One catalyst ink solution series is mixed with LiCl, while the other solution series lacks LiCl. We demonstrate that the CL prepared using a lower MW PBI has a higher electrochemical surface area, lower charge transfer resistance, and higher fuel cell performance. The addition of LiCl enhances the dispersion of the high MW PBIs in the catalyst ink solution and acts as a foaming agent in CL, thus improving fuel cell performance. However, LiCl exerts small influence on the fuel cell performance of the MEAs fabricated using low MW PBIs.  相似文献   

15.
During the operation of proton exchange membrane fuel cell (PEMFC), it always suffers from reversible performance loss caused by the oxidation of platinum catalyst on its electrode, which reduces the electrochemical active surface area. Short circuit method has been found to improve the performance of fuel cells by stripping of oxides and other adsorbed species from platinum, which needs systematical understanding the effective parameters of short circuit method on fuel cell performance. In this paper, the effects of different short circuit activation parameters (duration, interval, cycles, cut-off voltage, operating current) are carefully studied and analyzed during short circuit operations. In addition, the mechanism revealing how relevant parameters influence short circuit activations is deeply analyzed. The results show that five groups of activation parameters have obvious influence on the activation of fuel cell, indicating that the short-circuit activation effect can be optimized. Among these parameters, the short-circuit duration parameter have the greatest impact on activation, because the platinum hydroxides and oxides is gradually removed during short-circuit duration and results in a larger effective surface area of the platinum catalyst for the electrochemical reaction. However, the smallest impact is short-circuit interval. Another finding is that the five activation parameters are not independent, so the optimal activation parameter value needs to be analyzed in combination with the operating conditions. Finally, according to the activation principle, selection of appropriate short circuit activation parameters for application are proposed to further improve performance and fuel utilization by considering the safety of the stack.  相似文献   

16.
A high temperature-proton exchange membrane fuel cells (HT-PEMFC) based on phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane is able to operate at elevated temperature ranging from 100 to 200 °C. Therefore, it is evident that the relative humidity (RH) of gases within a HT-PEMFC must be minimal owing to its high operating temperature range. However, it has been continuously reported in the literature that a HT-PEMFC performs better under higher inlet RH conditions. In this study, inlet RH dependence on the performance of a HT-PEMFC is precisely studied by numerical HT-PEMFC simulations. Assuming phase equilibrium between membrane and gas phases, we newly develop a membrane water transport model for HT-PEMFCs and incorporate it into a three-dimensional (3-D) HT-PEMFC model developed in our previous study. The water diffusion coefficient in the membrane is considered as an adjustable parameter to fit the experimental water transport data. In addition, the expression of proton conductivity for PA-doped PBI membranes given in the literature is modified to be suitable for commercial PBI membranes with high PA doping levels such as those used in Celtec® MEAs. Although the comparison between simulations and experiments shows a lack of agreement quantitatively, the model successfully captures the experimental trends, showing quantitative influence of inlet RH on membrane water flux, ohmic resistance, and cell performance during various HT-PEMFC operations.  相似文献   

17.
An experimental study on the transient power characteristics of a fuel cell generator has been conducted. The generator is hybridized by a proton exchange membrane (PEM) as the main power source and a lithium-ion battery as the secondary power source. power-conditioning module consisting of a main bidirectional converter and an auxiliary converter has been designed to manage the hybrid power of the generator that copes with fast dynamics of variable loads. Sensors embedded in the generator have measured the electrical properties dynamically. It was found that the present power-conditioning scheme has well controlled the power flow between the fuel cell stack and the battery by regulating the power flow from or to the battery. In addition, the thermal management system using pulse width modulation (PWM) schemes could limit the operation temperature of the fuel cell generator in a designed range. Furthermore, the dynamics of electrical efficiency of the generator are found to be parallel with those of the net system power. Finally, the stability and reliability of the fuel cell generator is proven by the rational dynamic behaviors of thermal and electrical properties for over 30-h demonstration.  相似文献   

18.
Proton exchange membrane fuel cell (PEMFC) performance depends on different fuel cell operating temperatures, humidification temperatures, operating pressures, flow rates, and various combinations of these parameters. This study employed the method of the design of experiments (DOE) to obtain the optimal combination of the six primary operating parameters (fuel cell operating temperatures, operating pressures, anode and cathode humidification temperatures, anode and cathode stoichiometric flow ratios). In the first stage, this study adopted a 2k−2 fractional factorial design of the DOE to determine whether these factors have significant effects on a response and the interactions between various parameters. Second, the L27(313) orthogonal array of the Taguchi method is utilized to determine the optimal combination of factors for a fuel cell. Based on this study, the operating pressure, the operating temperature, and the interactions between operating temperature and operating pressure have a significant effect on the fuel cell performance. Among them, the operating pressure is the most important contributor. When the operating pressure increases, it should simultaneously lower the effects of other factors. While both the operating temperature and pressure increase simultaneously with that, the other factors are at appropriate conditions, it is possible to improve the fuel cell performance.  相似文献   

19.
Two series of homopolymer-like sulfonated aromatic poly(ether ketone)s (SPEKs) were readily prepared and post-sulfonated using mild conditions. The homopolymer-like SPEKs exhibited advantages in synthesis and physical properties over typical post-sulfonated random copolymers, such as rapid and mild sulfonation conditions, high molecular weights, site specificity and control over IEC, as well as an excellent combination of dimensional swelling stability, low methanol permeability and high proton conductivity. These beneficial membrane properties are reflected in the attractive direct methanol fuel cell (DMFC) and polymer electrolyte membrane fuel cell (PEMFC) performance of these homopolymer-like SPEKs as compared with typical random copolymer SPEKs.  相似文献   

20.
Selective sulfonated poly(imide)s with high proton conductivity and low methanol permeability were tested for their performance as proton exchange membranes in direct methanol fuel cells (DMFC). The proton to methanol transport selectivity of the poly(imide) membranes correlated well with the self-diffusion coefficients of water in the membranes as determined by pulsed-field gradient nuclear magnetic resonance. The poly(imide) membranes showed improved fuel cell device performance, however high interfacial resistance between the membranes and electrodes decreased the membrane electrode assembly (MEA) conductivity to methanol crossover selectivity, likely due to the use of NAFION®-based electrodes. The maximum power densities of SPI-50, SPI-75, and NR-212 based MEAs were 75, 72, and 67 mW cm−2, respectively, with a methanol feed concentration of 2 M at a cell temperature of 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号