共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(29):14671-14682
The production of hydrogen via steam reforming (SR) of simulated bio-oil (glycerol, syringol, n-butanol, m-xylene, m-cresol, and furfural) was investigated over Ni/CeO2-Al2O3 and Me-Ni/CeO2-Al2O3 (Me = Rh, Ru) catalysts. Monometallic (Ni) and bimetallic (Rh-Ni and Ru-Ni) catalysts were prepared by the wetness impregnation technique of the CeO2-Al2O3 support previously synthesized by the surfactant-assisted co-precipitation method. The as-prepared powders were systematically characterized by N2-physisorption, XRD, H2-TPR, and TEM measurements to analyze their structure, morphology, and reducibility properties. Experiments were performed in a continuous fixed-bed reactor at atmospheric pressure, temperature of 800 °C, steam to carbon (S/C) ratio of 5, and WHSV of 21.15 h−1. Then, the temperature was decreased to 700 °C and increased afterwards to 800 °C. After the experiments TPO and TEM analysis were performed on the spent catalysts to check any evidence of catalyst deactivation. The results showed that the incorporation of noble metal (Ru or Rh) promoter positively affected the activity of the Ni/CeO2-Al2O3 catalysts by enhancing the reducibility of Ni2+ species. Ni-based catalyst deactivated under the studied conditions, whereas Ru- and mainly Rh-promoted systems showed increased resistance to carbon deposition by favouring the gasification of adsorbed carbon species. Between all tested catalysts, the Rh-Ni/CeO2-Al2O3 provided the highest H2 yield and coking-resistance in SR of simulated bio-oil. 相似文献
2.
3.
《International Journal of Hydrogen Energy》2020,45(36):18376-18397
Steam reforming of biomass pyrolysis oil or bio-oil derivatives is one of the attractive approaches for hydrogen production. The current research focused on the development of promising catalysts with favorable catalytic activity and high coke resistance. Noble metal such as Rh has been proven to achieve promising reforming reaction efficiencies. However, Ni has attracted considerable attention owing to its stability, cost effectiveness, and good activity in breaking C–C and C–H bonds. Nevertheless, Ni-based catalysts have serious carbon deposition problems arising from chemical poisoning, metal sintering, and poor metal dispersion. This paper attempted to review the current trends in catalyst development considering the aspects of supports, metals, and promoters as an effort to find possible solutions for the limitations of Ni-based catalysts. The present review also covered the current understanding on the reaction mechanisms as well as the future prospects in the field of steam reforming catalysts. 相似文献
4.
《International Journal of Hydrogen Energy》2019,44(3):1492-1504
Zeolite L featuring different size and shape (nanocrystals and discs), with and without alkaline metal exchange (Cs or Na), was used as catalyst support in bio-oil/bio-glycerol mixture Steam Reforming (SR). Zeolites were modified with CeO2 to improve support properties before the impregnation of nickel. Then, prepared catalysts were tested in SR of a multi-component synthetic bio-oil/bio-glycerol mixture at 1073 and 973 K, under atmospheric pressure and using a Steam to Carbon (S/C) ratio of 5.0. Activity tests showed that catalysts deactivated during the experiments at 973 K. In addition, the sodium exchange produced the sintering of the Zeolite L crystals. Thus, Na containing catalysts produced low conversions and hydrogen yields lower than 30%. On the other hand, Cs containing catalysts resulted in slightly lower hydrogen yields than the supports without this metallic cation. Regarding the morphology of the zeolites, the ones with disc shape were the most active for bio-oil SR purposes producing hydrogen yields close to 80% in the first reaction stage at 1073 K and hydrogen yields close to the 50% at the last reaction stage at 1073 K. 相似文献
5.
Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed 总被引:1,自引:0,他引:1
Sustainable pathways for producing hydrogen as a synthesis intermediate or as a clean energetic vector will be needed in the future. Renewable biomass resources should be taken into account in this new scenario. Processing through a pyrolysis step, optimized to high liquid production (bio-oil), increases the energy bulk density of biomass for transportation. Steam reforming of the aqueous fraction is an alternative process that increases the hydrogen content of the syngas. However, the thermochemical conversion of organic compounds derived from biomass involves drawbacks such as coke formation on the catalysts. This work studies the performance of Ni-Al catalysts modified with Ca or Mg in the steam reforming of the aqueous fraction of pyrolysis liquids and the resulting coke deposits. The catalyst composition influenced the quantity and type of coke deposits. Calcium improved the formation of carbonaceous products leading to lower H2/CO ratios while magnesium improved the WGS (water gas shift) reaction. The strategy of reducing the space velocity resulted in a low coke removal although the addition of small quantities of oxygen decreased the coke content of the catalyst by more than 50% weight. Greater efficiency and further catalyst development are needed to improve the energetic requirements of the process. 相似文献
6.
Xinbao Li Lianjin Xue Yingying Zhu Geng Chen Guohua Yang Shurong Wang 《International Journal of Hydrogen Energy》2018,43(29):13212-13224
To clarify the understanding of the mechanism of bio-oil catalytic steam reforming, we selected acetic acid as a typical bio-oil model compound to study its detailed behavior in decomposition over an active stepped Ni surface by density functional theory calculations. The adsorption geometries and energies of various intermediates were reported. Linear correlations between the adsorption energy and the number of hydrogen atoms removed for CHxCOOH, CHxCOO, and CHx species (x = 1–3) were found, with increments of ?1.56, ?0.81, and ?1.80 eV, respectively. Thirty-seven possible elementary reactions of acetic acid decomposition were proposed, and their activation energies, reaction energies, rate constants, and equilibrium constants were calculated. Acetic acid dissociation likely started via α-carbon dehydrogenation, OH dehydrogenation, and dehydroxylation. Combined with microkinetic modeling, the most preferable decomposition pathway was suggested as CH3COOH → CH3CO → CO + CH3. The rate-determining step was CH3COOH dehydroxylation to CH3CO with an activation energy of 0.68 eV and a rate constant of 3.82 × 108 s?1. The formation of CH3COO was dominant at high temperatures, whereas its decomposition occurred with difficulty. 相似文献
7.
Increasing biodiesel production has resulted in a glut of glycerin that has led to a precipitous drop in market prices. In this study, the use of glycerin as a biorenewable substrate for hydrogen production, using a steam reforming process, has been evaluated. Production of hydrogen from glycerin is environmentally friendly because it adds value to this byproduct generated from biodiesel plants. The study focuses on nickel-based catalysts with MgO, CeO2, and TiO2 supports. Catalysts were characterized with thermogravimetric analysis and X-ray diffraction techniques. Maximum hydrogen yield was obtained at 650 °C with MgO supported catalysts, which corresponds to 4 mol of H2 out of 7 mol of stoichiometric maximum. 相似文献
8.
This work presents thermodynamics analysis of hydrogen production via steam reforming of bio-oil components. The model compounds, acetic acid, ethylene glycol and acetone, representatives of the major classes of components present in the aqueous fraction of bio-oil were used for the study. The equilibrium product compositions were investigated in a broad range of conditions like temperature (400–1300 K), steam to fuel ratio (1–9) and pressure (1–20 atm). Any of the three model compounds can be fully reformed even at low temperatures producing hydrogen with maximum yield ranging from 80% to 90% at 900 K. Steam to fuel ratio positively affect the hydrogen content over the entire range of temperature studied. Conversely, higher pressure decreases the hydrogen yield. The formation of solid carbon (graphite) does not constitute a problem provided that reforming temperatures higher than 600 K and steam to fuel ratios higher than 4 for acetic acid and ethylene glycol and 6 for acetone are to be used. Thermal decomposition of the bio-oil components is thermodynamically feasible, forming a mixture containing C(s), CH4, H2, CO, CO2, and H2O at various proportions depending on the specific nature of the compound and the temperature. Material and energy balances of complete reforming system demonstrated that the production of 1 kmol/s hydrogen from bio-oil steam reforming requires almost the same amount of energy as with natural gas reforming. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(46):24397-24411
In our earlier work, we have reported that Ni supported on γ-Al2O3–La2O3–CeO2 (ALC) catalyst prepared via metal organic framework (MOF) was more active for acetic acid steam reforming (AASR) [1]. Here we report detailed study on the performance of this catalyst for AASR. Effects of operating conditions such as temperatures (400–650 °C), steam to carbon molar ratio (S/C) and feed flow rate (1.5–5.5 mL/h) were evaluated and optimized. Results showed an excellent activity for AASR at the molar ratio S/C = 6.5, feed flow rate = 2.5 mL/h and, at 600 °C with almost total conversion and more than 90% of H2 yield. The ordered porous structure of embedded nickel supported catalyst promotes excellent steam reforming activity and water gas shift reaction even at low temperatures, which leads to the good stable behaviour up to 36 h of TOS. The coke formation was also significantly suppressed by ALC support. Catalyst regenerated by passing oxygen at 500 °C and followed by reduction in hydrogen also show a good activity. Catalysts were characterized by DT-TGA, XRD, TEM, H2-TPR and N2-adsorption-desorption to understand the micro structure and coke deposition behaviour. 相似文献
10.
Aingeru Remiro Beatriz ValleLide Oar-Arteta Andrés T. AguayoJavier Bilbao Ana G. Gayubo 《International Journal of Hydrogen Energy》2014
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation. 相似文献
11.
Catalyst deactivation caused by coke formation is a bottleneck in steam reforming of bio-oil for hydrogen production. The investigation of carbon deposition behavior can make a contribution to the improvement of catalyst and the knowledge of reaction mechanism. In this paper, m-cresol (C7H8O, one of the organic compounds present in bio-oil) was chosen as model compound. The experiment was carried out on a commercial Ni/MgO catalyst. As a comparative test, m-cresol decomposition showed carbon deposition can be formed more easily under higher temperature. In steam reforming process, for the competition of carbon deposition and carbon elimination, a peak value of coking formation rate was obtained in a broad range of temperature (575–900 °C). The increase of steam to carbon ratio can favor the carbon elimination. Final coking formation rate curve was determined under optimal reaction conditions and the results showed the severity of carbon deposition maintained a very low level during the entire reaction time. Based on the distribution of reforming products, high temperature and sufficient water feeding can favor the carbon conversion from solid and liquid phase to gaseous phase. Unreacted m-cresol is the main organic compound detected in liquid condensate. Some secondary reactions can be deduced through the other compounds detected. The carbon deposition state on catalyst surface can be in the form of nanofiber, but their concrete shapes can be different due to different reaction conditions. 相似文献
12.
Mingqiang Chen Jiaxin Hu Yishuang Wang Chunsheng Wang Zhiyuan Tang Chang Li Defang Liang Wen Cheng Zhonglian Yang Han Zhang 《International Journal of Hydrogen Energy》2021,46(5):3651-3668
Steam reforming of bio-oil derived oxygenates is a green and sustainable method for hydrogen production. In this work, hydrogen production from steam reforming of acetic acid (SRAA) was investigated over Ti-modified Ni/Attapulgite (ATP) catalysts that prepared via sequential precipitation technique. The effects of Ti additive, precipitation sequence and Ti-salt precursors (TiCl4, TiOSO4) on the structural and physicochemical properties of catalysts were characterized by N2 adsorption-desorption, XRD, FT-IR, HRTEM, XPS, H2-TPR and NH3-TPD. These results indicated that the interaction among Ti species, Ni active metal and ATP enhanced the reduction performance as well as weakened surface acidity of the Ni/ATP catalyst, and also promoted the electron transfer to form Niδ? species. Obviously, compared with Ti precursor salts, the precipitation sequences played a key role in determining the surface properties of Ti-modified catalysts. Among them, the Ni–TiS/ATP catalyst synthesized by co-precipitation method exhibited better reducibility and lower surface acidity, as well as produced more Niδ? species and Niδ?-Ov-Ti3+ interface sites. Then the synergistic effects among the above-mentioned characters made the Ni–TiS/ATP catalyst present highest carbon conversion (93.4%) and H2 yield (77.6%) during SRAA reactions. The analyses of XRD, HRTEM and TG were implemented on used catalysts and discovered Ni–TiS/ATP catalysts shown promising metal sintering and coke resistance, which mainly caused by the presence of flat Ni–Ti@ATP structures. The possible conversion mechanism of acetic acid in the flat Ni–Ti@ATP structure of co-precipitation Ti-modified catalyst was also elucidated. 相似文献
13.
Hydrogen-rich syngas production from the catalytic steam reforming of bio-oil from fast pyrolysis of pinewood sawdust was investigated by using La1−xKxMnO3 perovskite-type catalysts. The effects of the K substitution, temperature, water to carbon molar ratio (WCMR) and bio-oil weight hourly space velocity (WbHSV) on H2 yield, carbon conversion and the product distribution were studied in a fixed-bed reactor. The results showed that La1−xKxMnO3 perovskite-type catalysts with a K substitution of 0.2 gave the best performance and had a higher catalytic activity than the commercial Ni/ZrO2. Both high temperature and low WbHSV led to higher H2 yield. However, excessive steam reduced hydrogen yield. For the La0.8K0.2MnO3 catalyst, a hydrogen yield of 72.5% was obtained under the optimum operating condition (T = 800 °C, WCMR = 3 and WbHSV = 12 h−1). The deactivation of the catalysts mainly was caused by coke deposition. 相似文献
14.
From a technical and economic point of view, autothermal steam reforming offers many advantages, as it minimizes heat load demand in the reformer. Bio-oil, the liquid product of biomass pyrolysis, can be effectively converted to a hydrogen-rich stream. Autothermal steam reforming of selected compounds of bio-oil was investigated using thermodynamic analysis. Equilibrium calculations employing Gibbs free energy minimization were performed for acetic acid, acetone and ethylene glycol in a broad range of temperature (400–1300 K), steam to fuel ratio (1–9) and pressure (1–20 atm) values. The optimal O2/fuel ratio to achieve thermoneutral conditions was calculated under all operating conditions. Hydrogen-rich gas is produced at temperatures higher than 700 K with the maximum yield attained at 900 K. The ratio of steam to fuel and the pressure determine to a great extent the equilibrium hydrogen concentration. The heat demand of the reformer, as expressed by the required amount of oxygen, varies with temperature, steam to fuel ratio and pressure, as well as the type of oxygenate compound used. When the required oxygen enters the system at the reforming temperature, autothermal steam reforming results in hydrogen yield around 20% lower than the yield by steam reforming because part of the organic feed is consumed in the combustion reaction. Autothermicity was also calculated for the whole cycle, including preheating of the organic feed to the reactor temperature and the reforming reaction itself. The oxygen demand in such a case is much higher, while the amount of hydrogen produced is drastically reduced. 相似文献
15.
N.D. Charisiou G. Siakavelas K.N. Papageridis A. Baklavaridis L. Tzounis K. Polychronopoulou M.A. Goula 《International Journal of Hydrogen Energy》2017,42(18):13039-13060
In the present work, a comparative study of Ni catalysts supported on commercially available alumina and lanthana-alumina carriers was undertaken for the glycerol steam reforming reaction (GSR). The supports and/or catalysts were characterized by PZC, BET, ICP, XRD, NH3-TPD, CO2-TPD, TPR and SEM. Carbon deposited on the catalytic surface was characterized by SEM, TPO and Raman. Concerning the Ni/LaAl sample it can be concluded that the presence of lanthana by: (a) facilitating the active species dispersion, (b) strengthening the interactions between nickel species and support, (c) increasing of the basic sites' population and redistributing the acid ones in terms of strength and density, provides a catalyst with improved performance for the GSR reaction, in terms of activity, H2 production and long term stability. TPO and Raman indicate that the carbon on the Ni/LaAl catalyst was mostly amorphous and was deposited mainly on the support surface. For the Ni/Al catalyst, graphitic carbon was prevalent and likely covered its active sites. 相似文献
16.
K. Bizkarra J.M. Bermudez P. Arcelus-Arrillaga V.L. Barrio J.F. Cambra M. Millan 《International Journal of Hydrogen Energy》2018,43(26):11706-11718
Catalysts based on Ni supported on alumina were studied for steam reforming (SR) of a synthetic bio-oil/bio-glycerol mixture and a real bio-oil. Catalyst tests were carried out in a continuous fixed bed reactor at atmospheric pressure and steam to carbon (S/C) ratio of 5.0. In the case of experiments with the bio-oil/bio-glycerol mixture the initial temperature was 1073 K, then it was successively changed to 973 K and 1073 K again to assess catalyst deactivation. Experiments with the bio-oil sample were run at 1073 K. First, the effect of modifications to the alumina support with CeO2 and La2O3 was studied in monometallic catalysts. Ni/CeO2Al2O3 was identified as the catalyst more resistant to deactivation, likely due to its higher oxygen mobility, and selected for further tests. Then, bimetallic catalysts were produced by impregnation of noble metals (Pd, Pt or Rh) on the Ni catalyst supported on CeO2Al2O3. Co-impregnation of Rh and Ni on the CeO2Al2O3 support represented a further improvement in the catalytic activity and stability respect to the monometallic catalyst, leading to stable gas compositions close to thermodynamic equilibrium due to the favourable RhNi interactions. RhNi/CeO2Al2O3 is therefore a promising catalyst to produce a hydrogen-rich gas from bio-oil SR. 相似文献
17.
Yishuang Wang Mingqiang Chen Xiaojing Li Zhonglian Yang Tian Liang Zhongshan Zhou Yu Cao 《International Journal of Hydrogen Energy》2018,43(45):20438-20450
Steam reforming of ethylene glycol was investigated over Ni-based catalysts supported on Attapulgite (ATP; originating from Jiangsu (JS), Anhui, and Gansu (GS) provinces in China). N2 adsorption–desorption, XRD, FTIR, H2-TPR, NH3-TPD, SEM, and TEM-EDS measurements were performed to analyze the catalyst properties. The results revealed that Ni/ATPGS had the largest particle size (17.9 nm) and the highest reductive degree (98.0%). Consequently, Ni/ATPGS showed the highest ethylene glycol conversion (97.2%) during the first 4 h of reaction. However, this catalyst showed the lowest H2 yield (71.2%), possibly owing to large Ni particle sizes as well as ample surface acidic sites and acidity, leading to a high selectivity toward CH4 (20.8%) and C2H4 (2.2%). In contrast, Ni/ATPJS presented the highest H2 yield (89.8%) owing to it having the smallest Ni particle sizes and lowest amount of surface acidic sites. Additionally, this catalyst showed the highest stability over 8 h of reaction. An examination of the spent catalysts revealed that Ni/ATPJS possessed excellent antisintering and coking properties. 相似文献
18.
《International Journal of Hydrogen Energy》2019,44(47):25514-25523
Hydrogen production via steam reforming of bio-oil combining heat recovery of blast furnace slag was investigated via thermodynamic analysis in this paper. The addition of blast furnace slag just had a slight enhancement for hydrogen production from the steam reforming process of bio-oil at low temperature, and had almost no thermodynamic effect (either promotion or restraint) for the steam reforming reaction equilibrium at high temperature where higher H2 yield were obtained, no matter how much blast furnace slag was added. However, different masses of blast furnace slag as heat carrier supply different amounts of heat, so the optimal blast furnace slag addition was performed via energy balance. If the sensible heats of the reformed gas and the slag after steam reforming reactions were unrecycled, the required mass of blast furnace slag was over 30 times of bio-oil mass, while the required slag mass was just 11.5 times of bio-oil mass if the sensible heats after the steam reforming reactions were recycled. For the latter, about 0.144 Nm3 H2 per kg blast furnace slag was obtained at the reforming temperature of 700–750 °C and the steam/carbon mole ratio of 6. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(53):28350-28360
A straightforward thermodynamic analysis of bio-oil steam reforming was carried out in the context of hydrogen and syngas production, employing Gibbs energy minimization method to determine equilibrium composition and global reaction heat. The bio-oil model compound was a mixture of acetic acid, phenol, and acetone. The effects of process variables, such as temperature and inlet S/C molar ratio, were investigated over a wide range of conditions. Thermodynamic analysis was performed using the software Aspen Plus v.11. It was identified the best operational conditions that could maximize syngas and further hydrogen production considering energy efficiency. The optimum production of hydrogen is 2.28 mol per carbon mole at S/C = 10 and 850 K, and syngas is 2.37 mol per carbon mole at S/C = 10 and 900 K. It has been demonstrated that the equilibrium calculations can be used to simulate these steam reforming reactions, given the catalyst's behavior. 相似文献
20.
The steam reforming of pyrolysis bio-oil is one proposed route to low carbon hydrogen production, which may be enhanced by combination with advanced steam reforming techniques. The advanced reforming of bio-oil is investigated via a thermodynamic analysis based on the minimisation of Gibbs Energy. Conventional steam reforming (C-SR) is assessed alongside sorption-enhanced steam reforming (SE-SR), chemical looping steam reforming (CLSR) and sorption-enhanced chemical looping steam reforming (SE-CLSR). The selected CO2 sorbent is CaO(s) and oxygen transfer material (OTM) is Ni/NiO. PEFB bio-oil is modelled as a surrogate mixture and two common model compounds, acetic acid and furfural, are also considered. A process comparison highlights the advantages of sorption-enhancement and chemical looping, including improved purity and yield, and reductions in carbon deposition and process net energy balance.The operating regime of SE-CLSR is evaluated in order to assess the impact of S/C ratio, NiO/C ratio, CaO/C ratio and temperature. Autothermal operation can be achieved for S/C ratios between 1 and 3. In autothermal operation at 30 bar, S/C ratio of 2 gives a yield of 11.8 wt%, and hydrogen purity of 96.9 mol%. Alternatively, if autothermal operation is not a priority, the yield can be improved by reducing the quantity of OTM. The thermodynamic analysis highlights the role of advanced reforming techniques in enhancing the potential of bio-oil as a source of hydrogen. 相似文献