首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

2.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

3.
The pre-reforming of higher hydrocarbon, propane, was performed to generate hydrogen from LPG without carbon deposition on the catalysts. A Ru/Ni/MgAl2O4 metallic monolith catalyst was employed to minimize the pressure drop over the catalyst bed. The propane pre-reforming reaction conditions for the complete conversion of propane with no carbon formation were identified to be the following: space velocities over 2400 h−1 and temperatures between 400 and 450 °C with a H2O/C1 ratio of 3. The combined pre-reformer and the main reformer system with the Ru/Ni/MgAl2O4 metallic monolith catalyst was employed to test the conversion propane to syngas where the reaction heat was provided by catalytic combustors. Propane was converted in the pre-reformer to 52.5% H2, 27.0% CH4, 17.5% CO, and 3.0% CO2 with a 331 °C inlet temperature and a 482 °C catalyst outlet temperature. The main steam reforming reactor converted the methane from the pre-reformer with a conversion of higher than 99.0% with a 366 °C inlet temperature and an 824 °C catalyst outlet temperature. With a total of 912 cc of the Ru/Ni/MgAl2O4 metallic monolith catalyst in the main reformer, the H2 production from the propane reached an average of 3.25 Nm3h−1 when the propane was fed at 0.4 Nm3h−1.  相似文献   

4.
We demonstrated an auto-thermal reforming process for producing hydrogen from biomass pyrolysis liquids. Using a noble metal catalyst (0.5% Pt/Al2O3 from BASF) at a methane-equivalent space velocity of around 2000 h−1, a reformer temperature of 800 °C–850 °C, a steam-to-carbon ratio of 2.8–4.0, and an oxygen-to-carbon ratio of 0.9–1.1, we produced 9–11 g of hydrogen per 100 g of fast pyrolysis bio-oil, which corresponds to 70%–83% of the stoichiometric potential. The elemental composition of bio-oil and the bio-oil carbon-to-gas conversion, which ranged from 70% to 89%, had the most significant impact on the yield of hydrogen. Because of incomplete volatility the remaining 11%–30% of bio-oil carbon formed deposits in the evaporator. Assuming the same process efficiency as that in the laboratory unit, the cost of hydrogen production in a 1500 kg/day plant was estimated at $4.26/kg with the feedstock, fast pyrolysis bio-oil, contributing 56.3% of the production cost.  相似文献   

5.
Steam reforming of crude bio-oil or some heavy component present in bio-oil is a great challenge for sustainable hydrogen production due to the extensive coke formation and catalyst deactivation. Catalyst regeneration will be an unavoidable operation in this process. In this paper, m-cresol (a model compound derived from bio-oil) was steam reformed on commercial Ni-based catalyst. Two conventional carbon elimination methods for coked catalyst were applied and the results showed that sustainable hydrogen production can be obtained based on carbon deposition/elimination. The carbon deposition can be gasified easily under certain temperature. The activity of regenerated catalyst samples can be nearly recovered as the fresh ones. Under the reaction conditions of 850 °C and steam to carbon ratio 5:1, >66% hydrogen mole fraction, >81% hydrogen yield, and >97% carbon conversion can be achieved based on regenerated catalyst. Catalyst characterization indicated that the loss of active metal can be considered as the main reason for tiny activity drop. Ni redispersion and Fe contamination may be another two factors that influence catalyst activity.  相似文献   

6.
Present study reports on high catalytic activity of CNTs-supported Ni catalyst (x% Ni-CNTs) synthesized by the homogeneous deposition–precipitation method, which was successfully applied for low-temperature reforming of organic compounds in bio-oil. The optimal Ni-loading content was about 15 wt%. The H2 yield over the 15 wt% Ni-CNTs catalyst reached about 92.5% at 550 °C. The influences of the reforming temperature (T), the molar ratio of steam to carbon fed (S/C) and the current (I) passing through the catalyst, on the reforming process of the bio-oil over the Ni-CNTs' catalysts were investigated using the stream as the carrier gas in the reforming reactor. The features of the Ni-CNTs' catalysts with different loading contents of Ni were investigated via XRD, XPS, TEM, ICP/AES, H2-TPD and the N2 adsorption–desorption isotherms. From these analyses, it was found that the uniform and narrow distribution with smaller Ni particle size as well as higher Ni dispersion was realized for the CNTs-supported Ni catalyst, leading to excellent low-temperature reforming of oxygenated organic compounds in bio-oil.  相似文献   

7.
Steam reforming of acetic acid, one model compounds of bio-oil, was studied on the Ni/ZrO2–CeO2 catalysts which were prepared by the impregnation method. The results showed that high acetic acid conversion and hydrogen yield were obtained in the temperature range of 650–750 °C when H2O/HAC ratio was 3. Nevertheless, the catalyst deactivation was caused by carbon deposition eventually with time-on-stream. In order to discuss the behavior of the carbon deposition on the Ni/ZrO2–CeO2 catalyst during steam reforming of bio-oil, the structure and morphology of carbon deposition were investigated by BET, XRD, TG/DTA, TPR, SEM and EDX techniques. All the experimental results showed acetone and CO were the important carbon precursors of acetic acid reforming and the graphitic-like carbon was the main type of carbon deposition on the surface of the deactivated 12%Ni/CeO2–ZrO2 catalyst.  相似文献   

8.
A series of composite catalysts Ni/CeO2–ZrO2 were prepared via impregnation method with Ni as the active metal. A laboratory-scale fixed-bed reactor was employed to investigate the catalyst performance during hydrogen production by steam reforming bio-oil aqueous fraction. Effects of water-to-bio-oil ratio (W/B), reaction temperature, and the loaded weight of Ni and Ce on the hydrogen production performance of Ni/CeO2–ZrO2 catalysts were examined. The obtained results were compared with commercial nickel-based catalysts (Z417). The best performance of Ni/CeO2–ZrO2 catalyst was observed when the Ni and Ce loaded weight were 12% and 7.5% respectively. At W/B = 4.9, T = 800 °C, H2 yield reaches the highest of 69.7% and H2 content of 61.8% were obtained. Under the same condition, H2 yield and H2 content were higher than commercial nickel-based catalysts (Z417).  相似文献   

9.
High efficient production of lower alcohols (C1–C5 mixed alcohols) from hydrogen rich bio-oil derived syngas was achieved in this work. A non-catalytic partial oxidation (NPOX) gasification technology was successfully applied in the production and conditioning of bio-oil derived syngas using bio-oil (BO) and emulsifying waste engine oil (EWEO) as feedstock. The effects of water addition and feedstock composition on the gasification performances were investigated. When the BO20 and EWEO30 was mixed with mass ratio of 1: 0.33, the maximum hydrogen yield of 93.7% with carbon conversion of 96.7% was obtained, and the hydrogen rich bio-oil derived syngas was effectively produced. Furthermore, a two-stage bed reactor was applied in the downstream process of lower alcohols synthesis from hydrogen rich bio-oil derived syngas (H2/CO/CO2/CH4/N2 = 52.2/19.5/3.0/9.4/15.9, v/v). The highest carbon conversion of 42.5% and the maximum alcohol yield of 0.18 kg/kgcat h with selectivity of 53.8 wt% were obtained over the Cu/ZnO/Al2O3(2.5)//Cu25Fe22Co3K3/SiO2(2.5) catalyst combination system. The mechanism and evaluation for lower alcohols synthesis from model bio-oil derived syngas and model mixture gas were also discussed. The integrative process of hydrogen rich bio-oil derived syngas production and downstream lower alcohols synthesis, potentially providing a promising route for the conversion of organic wastes into high performance fuels and high value-added chemicals.  相似文献   

10.
The development of a high performance and low cost catalyst is an important contribution to clean hydrogen production via the catalytic steam reforming of renewable bio-oil. Solid waste coal ash, which contains SiO2, Al2O3, Fe2O3 and many alkali and alkaline earth metal oxides, was selected as a superior support for a Ni-based catalyst. The chemical composition and textural structures of the ash and the Ni/Ash catalysts were systematically characterized. Acetic acid and phenol were selected as two typical bio-oil model compounds to test the catalyst activity and stability. The conversion of acetic acid and phenol reached as much as 98.4% and 83.5%, respectively, at 700 °C. It is shown that the performance of the Ni/Ash catalyst was comparable with other commercial Ni-based steam reforming catalysts.  相似文献   

11.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   

12.
Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion of ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending as solid carbon over Ni/MgAl2O4 and Ni/Ce0.6Zr0.4O2.  相似文献   

13.
A LaNiO3 perovskite catalyst was prepared using the coprecipitation–oxidation hydrothermal method, followed by calcination at 600 °C for 2 h. The as-prepared sample was composed of La(OH)3 in nanorod structures and was covered with poorly crystalline Ni(OH)2. The mixed metal hydroxides were converted into cubic LaNiO3 perovskite after calcination at 600 °C. A catalytic steam reforming of ethanol (SRE) reaction for hydrogen production was performed in a fixed-bed reactor. The catalyst was reduced in situ in hydrogen at 400 °C prior to the reaction. The ethanol conversion reached 100% at 300 °C with 70% hydrogen selectivity. The highly catalytic activity of the reduced catalyst was due to the well-dispersion of Ni particles on the surface of active catalyst was formed in the in situ reduced catalyst. After a 80 h time-on-stream test at 350 °C, the used catalyst presented a La2O2CO3 component that was formed owing to the reaction of the CO2 product with La2O3. La2O2CO3 acted as a carbon reservoir to eliminate the deposited carbon and further stabilized the Ni particles on the La2O3 surface, which resulted in the highly catalytic activity during the entire reaction period. The deposited carbon after the SRE reaction was further examined by TGA, TPR, elemental analysis, and TEM.  相似文献   

14.
Catalyst deactivation caused by coke formation is a bottleneck in steam reforming of bio-oil for hydrogen production. The investigation of carbon deposition behavior can make a contribution to the improvement of catalyst and the knowledge of reaction mechanism. In this paper, m-cresol (C7H8O, one of the organic compounds present in bio-oil) was chosen as model compound. The experiment was carried out on a commercial Ni/MgO catalyst. As a comparative test, m-cresol decomposition showed carbon deposition can be formed more easily under higher temperature. In steam reforming process, for the competition of carbon deposition and carbon elimination, a peak value of coking formation rate was obtained in a broad range of temperature (575–900 °C). The increase of steam to carbon ratio can favor the carbon elimination. Final coking formation rate curve was determined under optimal reaction conditions and the results showed the severity of carbon deposition maintained a very low level during the entire reaction time. Based on the distribution of reforming products, high temperature and sufficient water feeding can favor the carbon conversion from solid and liquid phase to gaseous phase. Unreacted m-cresol is the main organic compound detected in liquid condensate. Some secondary reactions can be deduced through the other compounds detected. The carbon deposition state on catalyst surface can be in the form of nanofiber, but their concrete shapes can be different due to different reaction conditions.  相似文献   

15.
A novel process for hydrogen production via bio-oil catalytic reforming without steam addition was proposed. The liquid feedstock was a distillation fraction from crude bio-oil molecular distillation. The fraction obtained was enriched with the low-molecular-weight organics (acids, aldehydes, and ketones), and contained nearly all of the water from crude bio-oil. The highest catalytic performance, with a carbon conversion of 95% and a H2 yield of 135 mg g−1 organics, was obtained by processing the distillate over Ni/Al2O3 catalyst at 700 °C. The steam involved in the reforming reaction was derived entirely from the water in the crude bio-oil. The fresh and spent catalysts were characterized by N2-physisorption, thermogravimetric analysis, and high-resolution transmission electron microscopy. To further understand the reaction mechanisms, symmetric density functional theory calculations for decomposition were performed on four model compounds in bio-oil (acetic acid, hydroxyacetone, furfural, and phenol) over the Ni(111) surface. In addition, the decomposition of H2O∗ to OH∗ and O∗ and their subsequent steam reforming reactions with carbon precursors (CH∗ and CH3C∗) were also examined.  相似文献   

16.
Catalytic reforming of three typical bio-oil model compounds, phenol, acetic acid and hydroxyacetone, has been carried out over a Ni/nano-Al2O3 catalyst. Al2O3, in the form of nano-rods of length approximately 40 nm, was selected as the catalyst support. The catalyst showed superior performance in terms of activity and stability. The conversions for phenol, acetic acid and hydroxyacetone reached 84.2%, 98.2% and 98.7%, respectively, at the reaction temperature of 700 °C. The corresponding hydrogen yields were 69%, 87% and 97.2%. The catalyst maintained its high reactivity for more than 10 h in the catalytic reforming of three model compounds. The influences of steam to carbon ratio, catalyst loading and Ni content in the catalyst on the reforming performance were also investigated. In addition, the possible decomposition pathways for phenol, acetic acid and hydroxyacetone are proposed.  相似文献   

17.
Despite industrial application of methane as an energy source and raw material for chemical manufacturing, it is a potent heat absorber and a strong greenhouse gas. Evidently reduction of methane emission especially in the natural gas sector is essential. Methane to hydrogen conversion through non-thermal plasma technologies has received increasing attention. In this paper, catalytic methane conversion into hydrogen is experimentally studied via nano-second pulsed DBD plasma reactor. The effect of carrier gas flow, applied voltage, and commercial Ni–K2O/Al2O3 catalyst loading on methane conversion, hydrogen production, hydrogen selectivity, discharge power, and energy efficiency are studied. The results showed that in the plasma alone system, the highest methane conversion and hydrogen production occurs at argon flow rate of 70 mL/min. Increase in the applied voltage increases the methane conversion and hydrogen production while it decreases the energy efficiency. Presence of 1 g Ni–K2O/Al2O3 catalyst shifts the optimum voltage for methane conversion and hydrogen production to 8 kV, reduces the required power, and increases the energy efficiency of the process. Finally in the catalytic plasma mode the optimum process condition occurs at the argon flow rate of 70 mL/min, applied voltage of 8 kV, and catalyst loading of 6 g. Compared with the optimum condition in the absence of catalyst, presence of 6 g Ni–K2O/Al2O3 catalyst increased the methane conversion, hydrogen production, hydrogen selectivity and energy efficiency by 15.7, 22.5, 7.1, and 40% respectively.  相似文献   

18.
Pure hydrogen and carbon nanotubes were produced via thermo-catalytic decomposition (TCD) of methane over Ni-loaded MCM-22 catalysts in a vertical fixed-bed reactor. The effect of reaction temperature, gas hourly space velocity (GHSV), Cu/Zn promoter and time on stream on the methane conversion, hydrogen and carbon yields were studied over the synthesized catalysts. The catalytic performance of the 50%Ni–5%Cu–5%Zn/MCM-22 catalyst was found to be highly stable compared to other catalysts. The highest conversion of methane over 50%Ni–5%Cu–5%Zn/MCM-22 catalyst reached 85% with 947% carbon yield. Methane conversion increased on increasing the reaction temperature up to 750 °C and decreased thereafter at higher temperatures. XRD and TEM analysis of the carbon byproduct revealed that graphitic carbon appeared as a major crystalline phase during the reaction. HRTEM results revealed that most of the Ni particles were located on the tip of the carbon nanofibers/nanotubes formed on the spent catalysts. The carbon nanofibres have an average outer diameter of approximately 20–40 nm with an average length of 450–500 nm. Four types of carbon nanofibers were detected and their formation strongly depended on the reaction temperature, time on stream and degree of the interaction between the metallic Ni particle and support. The optimum conditions for CNT production within the experimental ranges were found at a reaction temperature of 750 °C.  相似文献   

19.
A dual bed catalyst system consisting of a metallic Ni monolith catalyst in the front followed by a supported nickel catalyst Ni/MgAl2O4 has been studied for the autothermal partial oxidation of methane to synthesis gas. The effects of bed configuration, reforming bed length, feed temperature and gas hourly space velocity on the reaction as well as the stability are investigated. The results show that the metallic Ni monolith in the front functions as the oxidation catalyst, which prevents the exposure of the reforming catalyst in the back to the very high temperature, while the supported Ni/MgAl2O4 in the back functions as the reforming catalyst which further increases the methane conversion by 5%. A typical 5 mmNi monolith–5mmNi/MgAl2O4 dual bed catalyst exhibits methane conversion and hydrogen and carbon monoxide selectivities of 85.3%, 91.5% and 93.0%, respectively, under autothermal conditions at a methane to oxygen molar ratio of 2.0 and gas hourly space velocity of 1.0 × 105 h−1. The dual bed catalyst system is also very stable.  相似文献   

20.
Using Ni/SiC as a catalyst, bagasse was microwave-assisted pyrolysis in a homemade quartz reactor. The results showed that with the continuous increase of Ni content, the experimental catalytic pyrolysis effect on bio-oil became more and more obvious, and the hydrogen yield gradually increased. When Ni content exceeded 8%, the hydrogen yield and bio-oil catalytic pyrolysis efficiency decreased, and the lowest bio-oil yield was 9.55% when Ni content was 15%, With the increase of power, the catalytic cracking efficiency and hydrogen yield of bio-oil increased, With the increase of catalyst dosage, the catalytic efficiency and the hydrogen yield increase gradually. When the catalyst quality exceeds 1/4 of the material, the growth rate of catalytic efficiency decreases, after alkali treatment, the variation law of hydrogen yield and bio-oil is consistent with that without alkali treatment. In contrast, more hydrogen can be produced after alkali treatment. Under the optimum conditions, the hydrogen yield was 35.85 g/kg biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号