首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of mesoporous nanocrystalline ceria–zirconia solid solutions with different Ce/Zr ratios were facilely synthesized via improved evaporation induced self-assembly strategy. The obtained materials with advantageous structural properties and excellent thermal stabilities were characterized by various techniques and investigated as the supports of the Ni based catalysts for CO2 reforming of CH4. The effects of Ce/Zr ratio and mesopore structure on promoting catalytic performances had been investigated. It was found that the catalyst supported on carrier with 50/50 Ce/Zr ratio behaved the highest catalytic activity. The reason for this might be that the mesoporous ceria–zirconia solid solution carrier contributed to the activation of CO2 by its own redox property. Compared with the catalyst without obvious mesostructure, the current mesoporous catalyst performed higher catalytic activity and better catalytic stability, demonstrating the advantages of the mesostructure. On the one hand, the predominant textural properties such as large surface area, big pore volume, and uniform channel helped to the high dispersion of the Ni particles among the mesoporous framework, finally leading to higher catalytic activity. On the other hand, the mesoporous matrix could stabilize the Ni nanoparticles under severe reduction and reaction conditions by the “confinement effect”, committed to better catalytic stability. Besides, the properties of the coke over the mesoporous catalyst were also carefully studied. Generally, these mesoporous nanocrystalline ceria–zirconia solid solutions were a series of promising catalytic carriers for CO2 reforming of CH4.  相似文献   

2.
A series of noble metal (Ru, Pd, Ag) doped Ni catalysts supported on La2O3–ZrO2 mixed oxide were prepared using the sol–gel method and evaluated for use in dry reforming of coke oven gas (COG). The catalysts were investigated by means of N2 adsorption–desorption, XRD, H2-TPR, TPH, TEM and TG–DSC. TPH analysis revealed that two carbonaceous species formed on the used catalysts and that the low-temperature carbon species was sufficiently active for the reforming reaction. TEM observations indicated that highly dispersed and small metal particles were formed, suppressing coke deposition and improving catalytic performance. The test results indicated that the addition of trace amounts of noble metals effectively promotes catalytic activity. The 0.1Ru–10Ni/8LZ catalyst showed the highest performance among the bimetallic catalysts, because of the strong synergetic effect between Ru and Ni via the formation of a Ru–Ni alloy, which will be promising catalysts in the catalytic dry reforming of COG.  相似文献   

3.
Zirconia supports were prepared by a sol–gel method (S-ZrO2) and by a templating sol–gel method (M-ZrO2). Nickel catalysts supported on zirconia were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. For comparison, a commercial zirconia (C-ZrO2) was also employed as a support for nickel catalyst. The effect of preparation method of zirconia on the catalytic property and catalytic performance of supported nickel catalysts (Ni/C-ZrO2, Ni/S-ZrO2, and Ni/M-ZrO2) was investigated. The crystalline and physical property of zirconia supports and the catalytic performance of supported nickel catalysts were strongly affected by the preparation method of zirconia. BET surface area and pore volume were decreased in the order of M-ZrO2 > S-ZrO2 > C-ZrO2. Both M-ZrO2 and S-ZrO2 supports showed only tetragonal phase of ZrO2, while C-ZrO2 support exhibited tetragonal and monoclinic phases of ZrO2. Crystalline size of nickel species in the Ni/ZrO2 catalysts decreased with increasing surface area and pore volume of ZrO2 supports. All the Ni/ZrO2 catalysts exhibited 100% conversion of ethanol at 500 °C, while product distributions over the Ni/ZrO2 catalysts were different depending on the preparation method of zirconia. Among the catalysts tested, the Ni/M-ZrO2 catalyst showed the best catalytic performance in hydrogen production by auto-thermal reforming of ethanol. Well developed mesopore, high surface area, and pure tetragonal phase of ZrO2 were responsible for fine nickel dispersion and high catalytic performance of Ni/M-ZrO2. C–C bond cleavage reaction and methane steam reforming reaction were also accelerated over the Ni/M-ZrO2 catalyst.  相似文献   

4.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

5.
Metal oxide-stabilized mesoporous zirconia supports (M–ZrO2) with different metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) were prepared by a templating sol–gel method. 20 wt% Ni catalysts supported on M–ZrO2 (M = Zr, Y, La, Ca, and Mg) were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. The effect of metal oxide stabilizer (M = Zr, Y, La, Ca, and Mg) on the catalytic performance of supported nickel catalysts was investigated. Ni/M–ZrO2 (M = Y, La, Ca, and Mg) catalysts exhibited a higher catalytic performance than Ni/Zr–ZrO2, because surface oxygen vacancy of M–ZrO2 (M = Y, La, Ca, and Mg) and reducibility of Ni/M–ZrO2 (M = Y, La, Ca, and Mg) were enhanced by the addition of lower valent metal cation. Hydrogen yield over Ni/M–ZrO2 (M = Zr, Y, La, Ca, and Mg) catalyst was monotonically increased with increasing both surface oxygen vacancy of M–ZrO2 support and reducibility of Ni/M–ZrO2 catalyst. Among the catalysts tested, Ni catalyst supported on yttria-stabilized mesoporous zirconia (Ni/Y–ZrO2) showed the best catalytic performance.  相似文献   

6.
Presented paper deals with the catalytic decomposition of hydrocarbons (methane and toluene) in the aspect of H2 production and types of obtained carbon deposits. The catalyst used in our studies was nickel supported on ceria–zirconia (Ni/CeZrO2). The aim of this work was to investigate the reactivity of obtained carbon deposits with H2O. Both issues are of great importance for determining the mechanisms of carbon deposits formation and their suppression during steam reforming reaction.  相似文献   

7.
Ni/Co bimetallic catalysts supported by commercial γ-Al2O3 modified with La2O3 for biogas reforming were prepared by conventional incipient wetness impregnation. The catalysts were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area and porosity analysis (BET), H2 temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM) and thermogravimetry coupled to differential scanning calorimetry (TG–DSC). XRD and XPS analysis revealed that a Ni/Co alloy was formed in the bimetallic catalysts. The Ni/Co ratio could be adjusted to improve pore textural properties, which enhanced the metal particle dispersion and resulted in smaller metal particle size, and thus increased the catalytic activity and resistance to carbon deposition. The activity and stability of the catalysts for biogas reforming was tested at 800 °C, ambient pressure, GHSV of 6000 ml gcat−1 h−1 and a CH4/CO2 molar ratio of 1 without dilute gas. Experimental results showed that the catalytic activity could be closely related to the Ni/Co ratio. The bimetallic catalyst 7Ni3Co/LaAl exhibited better catalytic and anti-coking performance due to smaller metal particles, higher metal dispersion, uniform pore distribution, surface enrichment of Co, as well as the synergetic effect between Ni and Co. During a 290 h stability test over the catalyst 7Ni3Co/LaAl, the average conversion of CH4 and CO2, selectivity to H2 and CO, and ratio of H2/CO were 93.7%, 94.0%, 94.9%, 97.8%, and 0.97, respectively. The average coking rate was 0.0946 mg gcat−1 h−1.  相似文献   

8.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

9.
In this study, the electrooxidation of ethanol on carbon supported Pt–Ru–Ni and Pt–Sn–Ni catalysts is electrochemically studied through cyclic voltammetry at 50 °C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt75Ru15Ni10/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials.  相似文献   

10.
The influence of crystal phase of ZrO2 on the catalytic performance of methane decomposition and the properties of deposited carbon on Ni/ZrO2 catalysts was investigated. Ni/ZrO2 catalysts were prepared by incipient-wetness impregnation method with 5% Ni loading, using amorphous, monoclinic, and tetragonal ZrO2 as supports. It was found that Ni/am-ZrO2 exhibited high activity and superior stability for carbon dioxide reforming of methane during 50 h of TOS, which could be attributed to the smaller Ni particle size and the lower coking rate. Additionally, the results of O2-TPO/TPH/CO2-TPO showed that the nature of carbon deposition via CH4 decomposition on Ni/ZrO2 catalysts was strongly influenced by both the Ni particle size and the crystal phase of zirconia. The lowest coking rate on Ni/am-ZrO2 for carbon dioxide reforming of methane was due to the lower CH4 decomposition rate and the higher gasification rate of carbon species by CO2. Carbon deposited on Ni/am-ZrO2 could be greatly removed by CO2, due to the presence of large amount of adsorbed oxygen species on the surface of amorphous ZrO2. For comparison, the imbalance of CH4 cracking and removal of coke by CO2 resulted in the accumulation of coke, leading to the deactivation of catalysts.  相似文献   

11.
The performance of CeO2-supported Pt–Ni and Pt–Co catalysts in the low temperature-Ethanol Steam Reforming (ESR) reaction has been evaluated studying the effect of the preparation method (impregnation/coprecipitation) and parameters such as dilution ratio, temperature, water-to-ethanol feed ratio and Gas Hourly Space Velocity (GHSV). The results show that impregnated samples perform better. In particular, the Pt/Ni/CeO2 catalyst starting from 350 °C leads to a products distribution very close to the equilibrium calculations, with a low CO content that is ideal for fuel cells devices. In addition, the Co-based catalysts appear attractive in terms of hydrogen yield and coking tendency.  相似文献   

12.
This study investigated the distinct catalytic behaviors of mono Mn, Fe, Co, Ni, Cu and Zn catalysts in the reforming of the small organics including methanol, acetic acid and acetone. The results showed that Mn, Fe or Zn-based catalysts showed almost no activity for steam reforming of either methanol, acetic acid or acetone, due to their low capacity to break the chemical bonds of the organics or to activate steam. Co and Cu-based catalysts were generally active for steam reforming of methanol. Nevertheless, Co-based catalysts promoted methanol decomposition to form a substantial amount of CO. Alumina as a support remarkably influenced catalytic stability of the catalyst. The unsupported Cu catalyst showed a much lower stability than Cu/Al2O3. Nevertheless, the unsupported Ni was more stable than Ni/Al2O3 catalyst, due to its high resistivity towards coking. The unsupported Co, however, was prone to coking. The C/H ratios in the coke formed over the unsupported and alumina-supported Ni or Co catalysts were distinct, indicating the involvement of alumina in the coking process. In addition, Ni and Co catalysts behaved differently. Ni/Al2O3 showed a superior stability than Co/Al2O3 in steam reforming of acetone. The coke formed on Ni/Al2O3 was more aromatic than that over Co/Al2O3 catalysts while morphologies of coke (nanotubes over Ni/Al2O3 versus fibrous coke over Co/Al2O3) were also different.  相似文献   

13.
Ni and Co catalysts supported on ITQ-6 zeolite have been synthesized and evaluated in the steam reforming of ethanol (SRE). Catalysts were also characterized by means of N2 adsorption-desorption, XRD, H2-TPR, and H2-chemisorption. ITQ-6 containing Co (Co/ITQ-6) presented a higher conversion of ethanol and production of hydrogen than ITQ-6 containing Ni (Ni/ITQ-6). The lower size of the metallic cobalt particles shown in Co/ITQ-6 seems to be the major responsible of its higher catalytic performance. Regarding the reaction by-products (CO, CH4, C2H4O and CO2), Co/ITQ-6 showed the lowest selectivity at medium and high temperatures (773 and 873 K). At low reaction temperatures (673 K) the dehydrogenation reaction predominates in the Co/ITQ-6, what it is supported by the high concentration of acetaldehyde detected at this temperature. In the case of the Ni/ITQ-6 the main side reaction at 673 K seems to be the methanation reaction since large concentrations of methane are detected. Stability studies were also carried out showing lower deactivation of Co/ITQ-6 at large reaction times (24 h). Characterization of the exhausted catalysts after reaction showed the presence of coke in both catalysts. Nevertheless, Co/ITQ-6 presented the lowest coke deposition. In addition, Co/ITQ-6 exhibited the lowest metal sinterization, what could be also account for the lower deactivation exhibited by this sample. This fact could be related to the higher interaction between the cobalt metallic particles and the ITQ-6 support as the H2-TPR studies demonstrate.  相似文献   

14.
To explore the interaction between NiO and Y2Ti2O7 support, and fabricate improved catalysts for SRM, several Ni/Y2Ti2O7 catalysts have been prepared by an impregnation method with the assistance of dielectric barrier discharge (DBD) plasma treating in different atmospheres. It is found that both the reaction performance and anti-coking ability are improved for the catalysts in comparison with the untreated sample, following the sequence of Ni/Y2Ti2O7–H2P > Ni/Y2Ti2O7-ArP > Ni/Y2Ti2O7-AirP > Ni/Y2Ti2O7. H2-TPR and XPS results have demonstrated that plasma treatment effectively strengthens the interaction between NiO and Y2Ti2O7 support, and Ni2+ cations preferentially interact solely with the Y3+ cations in the A site of Y2Ti2O7. As a consequence, the agglomeration of the metallic Ni species during the reduction process can be impeded, thus obtaining catalysts possessing higher Ni dispersion. As evidenced by Raman, EPR and XPS results, superoxide O2 anions induced by the intrinsic 8a oxygen vacancies of Y2Ti2O7 pyrochlore phase is the only kind of active surface oxygen sites, which might play a critical role for coking removing, and whose formation can be significantly facilitated by plasma treating. In conclusion, the improved active Ni surface area and the surface active superoxide O2 amount by DBD plasma treating are the major factors responsible for the enhanced reaction performance and coking resistance of the catalysts.  相似文献   

15.
In this study, a series of Y2B2O7 compounds with a fixed Yttrium cation A site but with different B (BTi, Sn, Zr and Ce) sites have been synthesized and used to support Ni for methane reforming for hydrogen production. By replacing the B site with Ti, Sn, Zr and Ce cations in sequence, the rA/rB ratios of the resulted Y2B2O7 compounds become smaller. As a consequence, the crystalline structures of the compounds become less ordered with the transformation of the bulk phase from well-ordered pyrochlore (Y2Ti2O7) to less ordered pyrochlore (Y2Sn2O7) and subsequently to defective fluorite (Y2Zr2O7 and Y2Ce2O7). XPS results have revealed that on the surfaces of Ni/Y2Ti2O7 and Ni/Y2Ce2O7, higher O/(Y + B) atomic ratios can be achieved than on the other two catalysts, indicating the presence of more abundant oxygen species, which is beneficial to remove the carbon deposits. In comparison with Y2Zr2O7 and Y2Ce2O7, the supported Ni or Ni3Sn2 active sites have stronger interaction with Y2Ti2O7 and Y2Sn2O7 supports, which anchors the active sites tighter on the supports and suppresses its aggregation effectively, thus obtaining catalysts with larger active metallic surface areas and better thermal stability. As a result, the stability and coking resistance of the catalysts can be enhanced. For the reduced Ni/Y2Sn2O7, Ni3Sn2 alloy has formed, which improves the coking resistance of the catalyst but degrades its activity significantly. On Ni/Y2Ti2O7 catalyst, which possesses the largest amount of active surface oxygen species, the strongest Ni interaction with the support can also be obtained, therefore, it exhibits the highest activity, stability and strongest coking resistance among all of the catalysts.  相似文献   

16.
The anodic Pt–Ru–Ni/C and the Pt–Ru/C catalysts for potential application in direct methanol fuel cell (DMFC) were prepared by chemical reduction method. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were carried out by using a glassy carbon working electrode covered with the catalyst powder in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4 at 25 °C. EIS information discloses that the methanol electrooxidation on the Pt–Ru–Ni/C catalyst at various potentials shows different impedance behaviors. The mechanism and the rate-determining step of methanol electrooxidation are changed with increasing potential. Its rate-determining steps are the methanol dehydrogenation and the oxidation reaction of adsorbed intermediate COads and OHads in low (400–500 mV) and high (600–800 mV) potentials, respectively. The catalytic activity of the Pt–Ru–Ni/C catalyst is higher for methanol electrooxidation than that of the Pt–Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol dehydrogenation is also better than that of the Pt–Ru/C catalyst.  相似文献   

17.
The deactivation by coke deposition of Ni and Co catalysts in the steam reforming of ethanol has been studied in a fluidized bed reactor under the following conditions: 500 and 700 °C; steam/ethanol molar ratio, 6; space time, 0.14 gcatalyst h/gethanol, partial pressure of ethanol in the feed, 0.11 bar, and time on stream up to 20 h. The decrease in activity depends mainly on the nature of the coke deposited on the catalysts, as well as on the physical–chemical properties (BET surface area, pore volume, metal surface area) of the catalysts. At 500 °C (suitable temperature for enhancing the WGS reaction, decreasing energy requirements and avoiding Ni sintering), the main cause of deactivation is the encapsulating coke fraction (monoatomic and polymeric carbon) that blocks metallic sites, whereas the fibrous coke fraction (filamentous carbon) coats catalyst particles and increases their size with time on stream with a low effect on deactivation, especially for catalysts with high surface area. The catalyst with 10 wt% Ni supported on SiO2 strikes a suitable balance between reforming activity and stability, given that both the capability of Ni for dehydrogenation and C–C breakage and the porous structure of SiO2 support enhance the formation of filamentous coke with low deactivation. This catalyst is suitable for use at 500 °C in a fluidized bed, in which the collision among particles causes the removal of the external filamentous coke, thus minimizing the pore blockage of the SiO2. At 700 °C, the coke content in the catalyst is low, with the coke being of filamentous nature and with a highly graphitic structure.  相似文献   

18.
Oxidative steam reforming (OSR) of n-propanol was studied over new Ni catalysts (ca. 7% Ni wt/wt) supported on Y2O3–ZrO2 oxides with different yttrium content (2–41 % Y2O3 wt/wt). Materials were characterized by X-ray diffraction, temperature-programmed reduction, X-ray photoelectron and Raman spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis and high resolution transmission electron microscopy. Samples were used in calcined form and tested in the temperature range 673–773 K using a reactant feed of n-propanol/water/O2 at a molar ratio 1/9/0.5. Hydrogen production is related with the support composition and Ni dispersion.  相似文献   

19.
Ni catalysts supported on (CaO–ZrO2)-modified γ-Al2O3 were prepared by sequential impregnation. The effects of varied CaO to ZrO2 mole ratios at 0, 0.20, 0.35, 0.45, and 0.55 on the activity and stability of the modified Ni catalysts were studied. As a result of using CaO–ZrO2 as a promoter, each catalyst contained CaO–ZrO2 at only 5%. γ-Al2O3 used as support was modified by CaO–ZrO2 before the deposition of nickel oxide. The addition of CaO–ZrO2 at an optimum ratio was expected to improve the stability of Ni catalysts due to the decrease of carbon formation resulting from carbon gasification. All the fresh catalysts were characterized by ICP, XRD, BET surface area, TGA in H2, and TPR before catalytic testing in steam methane reforming at 600 °C. The spent catalysts were examined by TEM and TGA to observe the catalysts deactivation. The identification of CaO–ZrO2 phases indicated that CaO and ZrO2 reacted with each other to be monoclinic solid solution ZrO2, CaZr4O9, CaZrO3, and CaO corresponding to the phase diagram of CaO–ZrO2. The existence of CaZrO3 for 0.55 mol ratio of CaO/ZrO2 enhanced activity in steam methane reforming because oxygen vacancies in CaZrO3 greatly preferred the water adsorption creating the favorable conditions for carbon gasification and, then, water gas shift. The prominence and continued existence of these two reactions on the Ni catalysts leads to the particular increase of H2 yield. Moreover, the increasing amount of CaZrO3 in the Ni catalysts significantly improved carbon gasification. However, the Ni catalysts with CaZrO3 showed whisker carbon after catalytic testing; this carbon specie has not been tolerated in steam methane reforming. Therefore, these results significantly differed from the hypothesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号