共查询到19条相似文献,搜索用时 93 毫秒
1.
针对非线性辨识问题,基于改进的T-S模型,提出一种自适应模糊神经网络模型(AFNN)。首先,基于模糊竞争学习算法确定系统的模糊空间和模糊规则数,并得出每个样本对每条规则的适用程度。其次,利用卡尔曼滤波算法在线辨识AFNN的后件参数。AFNN具有结构简洁,逼近能力强,能够显著提高辨识精度,并且辨识的模糊模型简单有效。最后,将该AFNN用于非线性系统的模糊辨识,仿真结果验证了该方法的有效性。 相似文献
2.
3.
基于T-S模糊模型的神经网络的系统辨识 总被引:4,自引:4,他引:4
基于T-S模糊模型,提出了利用神经网络实现非线性系统的辨识。首先,利用一种无监督的聚类算法分析输入输出数据生成初始的结构模型,确定系统的模糊空间和模糊规则数,构造神经网络辨识模型前提参数,使前提参数自适应变化,有较好的自学习能力和优化能力,采用最小二乘法取得结论参数。仿真结果验证了该方法是有效和可行的。 相似文献
4.
提出一种基于T-S模型的非线性系统模糊聚类辨识方法,对T-S模糊模型的前提部分和结论部分进行分开辨识,既简化该模型的辨识步骤,又提高它的泛化能力,同时也解决了T-S模糊模型随辨识系统复杂程度提高而规则数增大的问题。对一个非线性系统辨识的仿真结果验证了这种模糊聚类辨识方法的有效性。 相似文献
5.
6.
基于模糊规则的非线性系统建模方法 总被引:4,自引:0,他引:4
提出了一种基于模糊聚类自调整的模糊建模方法,基于模糊聚类通过自适应模糊推理来调整模糊系统,一种在线辨识算法的是通过非线笥系统参数的在线性估计来进行的,为了证明了所提出方法的适用性,给出了几个实例的仿真结果。 相似文献
7.
8.
提出一种与TSK模糊模型相似的模糊模型—M-2模型,证明了M-2模型与一个4层前向神经网络是等价的,在此基础上提出基于BP神经网络的模糊模型参数辨别算法,即通过BP神经网络对样本数据的学习,直接从样本数据获取模型参数,建立M-2模糊模型,通过仿真实例验证了该算法的有效性。 相似文献
9.
用模糊模型在线辨识非线性系统 总被引:25,自引:1,他引:25
讨论用模糊方法实现非线性系统在线辨识问题.首先给出了简化的模糊规则表达
方法及其相应的自适应模糊推理,在此基础上给出了模糊模型参数在线辨识算法.最后对
非线性模型进行在线辨识,验证了本文提出的模糊模型及其在线辨识算法. 相似文献
10.
基于模糊神经网络的系统辨识 总被引:9,自引:2,他引:9
基于模糊神经网络研究系统辨识问题,提出一种具体的模糊神经网络结构和相应算法,设计了开环系统和闭环系统辨识的结构。针对多个不同的对象进行仿真研究,结果表明用模糊神经网络建模较之传统建模方法能力强。 相似文献
11.
本文对基于T-S模型FNN的网络入侵检测方法进行系统地研究与分析.解决了T-S模型网络的前件网络模糊参数和后件网络连接权的学习问题.采用1998年林肯实验室数据集,运用统计分析的方法对数据进行特征选取,并进行归一化处理.最后进行网络入侵检测方法的建模,在Matlab仿真平台上进行仿真实验,结果表明基于T-S模型FNN的网络入侵检测方法具有很好的应用价值. 相似文献
12.
基于模糊神经网络方法实现茶味信号识别的研究 总被引:1,自引:0,他引:1
提出一种基于模糊c-均值聚类(FCM)的模糊神经网络模型用于荼味信号识剐的方法。该方法采用模糊c-均值聚类实现模糊神经网络中模糊子集及其隶属度函教的自动确定,并对模糊加权型推理法进行了改进,在此基础上构枣了一个模糊神经网络模型。通过5种茶味信号识别的仿真实验,表明本文提出方法的有效性。 相似文献
13.
邵俊倩 《计算机与数字工程》2013,41(9)
利用小波变换的多分辨率特性构造小波模糊神经网络模型,并应用在非线性系统的辨识上.在参数学习上,给出了模糊微分与李亚普诺夫稳定相结合的新算法—LSFD算法,并与梯度下降法进行了对比.通过仿真,结果表明小波模糊神经网络模型与模糊神经网络、模糊小波神经网络、小波神经网络和神经网络等模型相比,其性能指标最小,收敛速度更快,更加准确. 相似文献
14.
15.
在基于解释的机器学习问题上,近期提出的模糊模型FEBM(Fuzzy Explanation-Based Model)为模糊概念的识别和分类提供了一种很好的解决手段。在对该模型当对象的解释谓词在[0,1]上取确值的情况时,计算“对象属于概念C的真值”的公式进行适当调整的基础上,结合神经网络可以用于模式识别和分类的特点,提出了一种基于模糊神经网络和FEBM的模糊概念识别方法。实验表明,该方法是有效的和可行的,是关于该模型应用的一个极为有意义的尝试。 相似文献
16.
17.
18.
19.
基于神经网络的模糊自适应PID控制方法 总被引:51,自引:0,他引:51
提出一种基于BP神经网络的模糊自适应PID控制器。该控制器综合模糊控制、神经网络与PID调节各自的优点,既具有模糊控制的简单和有效的非线性控制作用,又具有神经网络的学习和适应能力,同时具备PID控制的广泛适应性,仿真实验表明该控制器对模型、环境具有较好的适应能力和较强的鲁棒性。 相似文献