首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
通过对不同断面形式、不同尺寸、不同埋深下的节理岩体隧洞进行分析研究,模拟研究了节理岩体隧洞围岩位移受断面尺寸影响的规律,其中隧洞断面形式考虑了城门洞形、正方形、圆形3种。结果表明:一般情况下,在隧洞埋深或断面尺寸增大时,围岩关键点位移增大;当隧洞埋深与断面尺寸均增大时,围岩关键点位移增大更为显著;在相同埋深下,围岩关键点位移随隧洞断面尺寸的增大而增大;在仅埋深变化和仅隧洞断面尺寸变化时,洞底关键点最大位移可能相同,这种情况发生的概率很小且只发生在洞底部位;正方形隧洞受断面尺寸影响最大,而洞底是受断面尺寸影响最小的部位。  相似文献   

2.
通过建立可反映岩体中砂岩与板岩组成、岩体倾角、岩体走向与隧洞轴线夹角等因素变化对岩体变形影响的砂板互层岩体本构模型,模拟了南水北调西线陡倾砂板互层岩体中隧洞掘进机开挖过程,初步分析了砂板互层岩体中隧洞围岩的变形及其对护盾式掘进机的影响。结果表明:埋深越大,围岩变形稳定过程越缓慢;岩体中板岩含量越高,围岩的前期变形越早、变形率越大,围岩的变形稳定过程也越长;对埋深较大且板岩含量较高的Ⅲ类岩体中的隧洞,应慎重采用护盾式掘进机开挖、管片衬砌的施工方案。  相似文献   

3.
高温效应及其围岩节理结构特征对隧洞稳定的影响是高地温隧洞设计的关键问题。文章基于高地温隧洞现场温度及位移数据,分析高地温隧洞节理围岩温度变化特性。同时采用离散元方法模拟不同高温、不同节理结构特征隧洞围岩温度场、位移场规律及塑性区分布范围。结果表明:相对于完整围岩,节理围岩减少了隧洞围岩变温区的面积,并且节理倾角越靠近水平方向或竖直方向对温度场的影响越大。节理围岩在一定程度上可阻止变形位移量。热力耦合作用下节理围岩塑性区面积仅是地应力作用下塑性区面积的2倍左右,且节理倾角与竖直方向夹角越小,节理围岩的塑性区面积越大。当节理倾角为90°时,节理围岩的塑性区面积最大。  相似文献   

4.
以东南亚某在建水电站引水隧洞粉砂质板岩段洞室开挖工程为依托,在现场地质调查测绘的基础上,对粉砂质板岩段围岩变形破坏特征进行分析,结果表明:粉砂质板岩段围岩的变形破坏主要分两种,一种由Ⅳ级结构面相互切割引起的局部垮塌掉块;另一种由断层引起的大规模垮塌变形。并基于有限元软件模拟断层分布发育特征对洞室稳定性的影响,结果表明:断层倾角在30°~60°对洞室稳定性影响较大,当断层位于隧洞中心上部时,对围岩变形的影响最大,特别左侧腰线部位岩体;当其位于隧洞中心下方,影响次之;与隧道中心相交时,影响最弱。研究成果可为后续类似洞段开挖支护方案提供参考借鉴。  相似文献   

5.
《人民黄河》2013,(9):139-140
选择影响节理岩体隧洞稳定性的隧洞埋深、节理间距等因素进行模拟分析,得出不同断面形式隧洞的位移响应。结果表明:在侧压力系数为1时,节理岩体隧洞无论断面形式采用圆形、城门洞形还是正方形,隧洞各部位关键点位移都随隧洞埋深的增大而呈增大趋势,城门洞形隧洞侧壁围岩位移受埋深影响较为显著,圆形隧洞洞底位移受埋深影响较小,圆形、正方形隧洞洞顶位移受埋深影响较为显著;当节理间距缩小后,圆形隧洞和城门洞形隧洞能够更好地适应节理岩体的地质条件,但正方形隧洞在含交错节理时易形成楔形体,从而威胁隧洞局部稳定。  相似文献   

6.
在高埋深下进行隧洞的开挖意味着将克服巨大的构造应力与自重应力,而在进行洞室开挖设计中地应力作用也是不容忽视的。因此,基于卸荷岩体理论和流变理论,依托室内流变试验进行了相关流变参数的反演,结合有限元分析软件ANSYS以及有限差分软件FLAC对比分析了不同埋深下隧洞围岩在加衬砌前后的蠕变变形量、塑性区等。结果表明:随着埋深的增加,隧洞周围的卸荷作用会越来越明显;洞室的开挖卸荷及洞侧围岩的共同作用,使得隧洞在埋深由浅及深的过程中经历了从“压力拱”的出现到消失的过程;当埋深增加时隧洞的水平向位移越来越大,洞侧变形将成为影响隧洞稳定的一个主要控制因素。  相似文献   

7.
侧压力系数对隧洞围岩稳定性的影响较为显著,并且与隧洞的断面形式也有一定的关系.隧洞围岩位移变化量在一定程度上又反映了隧洞围岩的稳定性情况.本文建立了三种断面形式的节理岩体隧洞模型,分别对它们处于不同埋深、不同侧压力系数下的位移响应进行模拟分析,归纳出三种断面形式的隧洞在侧压力系数变化下的响应规律.通过算例总结可知,在同一侧压力系数下,埋深越大,隧洞关键点位移都会增大,在侧压力系数较大时,位移受埋深增加影响较显著;在同一埋深下,侧压力系数较小时,隧洞围岩位移受侧压力系数影响也较小,当侧压力系数较大时,隧洞围岩位移变化较明显;当埋深和侧压力系数均取最大值时,不同断面隧洞的最大位移关键点所处的位置不同.本文的模拟可以为不同埋深、不同侧压力系数下的隧洞选择断面形式提供参考,也可以为节理岩体隧洞开挖支护提供指导.  相似文献   

8.
以某大型引调水工程IV类泥质板岩300 m埋深隧洞为研究对象,对毛洞、锚固支护洞身的围岩稳定性及应力应变进行对比分析.计算分析结果表明,锚固支护措施能够改善围岩的受力状态,更有利于保障围岩的稳定性.  相似文献   

9.
白鹿塬洞段是引汉济渭二期工程黄土区隧洞中埋深最大、地下水位最高的隧洞工程,其盾构法施工的可行性与安全性尚不明确。为此,应用ABAQUS渗流-应力全耦合数值模拟方法,采用Mohr-Coulomb弹塑性本构模型与刚度迁移法,对白鹿塬282.22 m埋深泥岩洞段的盾构掘进过程进行了三维仿真,重点分析了隧洞掘进阶段典型断面围岩孔隙水压力、应力变形、塑性区以及衬砌结构受力变形的变化规律。结果表明:典型断面处孔隙水压力随开挖过程先降低后回升,随后趋于稳定,距离掌子面前缘约3.6 m的隧洞断面处产生体积收缩,从而造成超孔隙水压力,压力水头最大值约248.0 m;洞周收敛,顶拱下沉,底拱隆起,隧洞周围围岩应力、应变、径向变形呈对称性分布,等效塑性应变主要发生在洞侧3 m深度范围内,顶拱无明显的塑性区,故围岩的最可能破坏模式为侧拱围岩塌落;在施工阶段衬砌结构内外缘以压应力为主,最大压应力为18.77 MPa,衬砌顶拱、底拱外缘以及拱腰内缘边墙产生较小的拉应力,约为0.85 MPa,均满足抗压承载力和抗拉强度要求。研究结果可为引汉济渭二期工程的安全运营及灾害防治提供参考依据。  相似文献   

10.
针对滇中引水工程浅埋第三系软岩隧洞的变形问题,选取柳家村隧洞进口段建立数值模型,研究了浅埋第三系软岩隧洞在开挖和支护后的变形破坏特征。结果表明:影响隧洞变形破坏的主要因数是围岩强度和隧洞埋深。隧洞开挖后,由于隧洞后段的围岩强度比隧洞前段大,在隧洞后段的变形量要大于隧洞前段的位移量,塑性区的分布范围也比前段广。支护后,隧洞的径向变形量和塑性区分布都得到了很好的控制,支护效果明显。在浅埋第三系洞段,开挖后的变形量与隧洞埋深有一定关系,即埋深相对较大洞段,开挖后的变形量也更大,在此洞段,应加强支护。研究成果对引水工程中的浅埋第三系软岩隧洞施工提供指导。  相似文献   

11.
在地下隧洞施工输水整个环节中,施工环境复杂多变。由于地质岩体结构应力、地下水以及岩体力学构造等各方面的不确定、不稳定因素的影响极大,如果仅依靠传统经验来进行管理,已经不符合现代化管理的最基本要求,也无法达到标准化管理。文章首先阐述了地下输水隧洞围岩稳定监测系统设计的目的,然后对设计输水隧洞围岩稳定监测系统进行了分析,以便及时正确掌控地下输水的隧洞围岩发展状态,保证隧洞施工的顺利完成。  相似文献   

12.
围岩稳定是保证水工隧洞工程安全稳定的重要前提。以某配水工程水工隧洞为研究背景,以提升长距离输水隧洞中围岩稳定性等级预测精度为目标,构建了多因素水工隧洞围岩稳定性预测指标体系,划分了围岩稳定等级,采用G1-改进RS法对影响指标进行主客观赋权,并引用博弈论理论运算组合权重,最后基于未确知测度理论提出改进G1-RS-UMT模型,完成了围岩稳定等级预测。结果表明:某配水工程B4标段水工隧洞中9个典型断面中GS19+590~GS20+050段围岩处于不稳定状态,GS21+340~GS28+061里程范围内8段围岩皆处为局部稳定状态。通过论证,改进G1-RS-UMT模型预测结果相比于TOPSIS模型其准确度更高,预测等级与实际情况相符合程度由66.67%提高到了88.89%。该研究为围岩稳定性预测提供了一种新的定量方法,为水工隧洞围岩稳定性预测结果提供更加有效的支撑。  相似文献   

13.
针对常德—吉首高速公路中蓖麻溪双连拱隧道工程,使用计算软件FLAC3D,在考虑水的渗流效应和不考虑水的渗流效应的两种情况下,分别对隧道围岩进行三维数值分析。得到了两种情况下的隧道围岩在分步开挖时的应力场、位移场的变化情况,以及围岩稳定性的分析。结论表明,考虑渗流效应的隧道围岩应力小于不考虑渗流效应时计算出的围岩应力;考虑渗流效应的围岩竖向位移远大于不考虑渗流作用的围岩竖向位移,而两种情况下的水平位移则相差不大;考虑渗流情况下的围岩的稳定性比不考虑渗流情况稍差。结论将为该隧道施工和防渗设计提供依据。  相似文献   

14.
深埋水工隧洞通常会面临高地下水位问题,为准确分析高外水隧洞围岩变形稳定性,需合理模拟外水内渗的力学作用。现阶段,学者们虽已认识到在饱和岩体渗流-应力耦合分析中考虑岩石基质压缩的必要性,但针对岩石基质压缩对高外水隧洞变形稳定性影响的相关研究尚未见报道。基于饱和多孔介质有效应力原理和孔压修正系数,并考虑围岩渗透特性动态演化,建立了高外水隧洞渗流-应力耦合分析模型,并在ABAQUS中进行了数值实现。依托某深埋引水隧洞,在分析其渗流场和变形稳定性的基础上,开展了不同岩石基质可压缩性条件下的高外水隧洞渗流-应力耦合分析,揭示了高外水隧洞围岩变形稳定性随岩石基质可压缩性的变化规律。结果表明:岩石基质压缩直接影响着高外水隧洞的外水内渗过程,对高外水隧洞围岩变形稳定性不利,岩石基质可压缩性越大,则围岩变形和塑性区范围越大,在分析中忽略岩石基质压缩将得出偏于危险的结果。  相似文献   

15.
高外水作用下,深埋软岩隧洞围岩-支护结构安全将受到极大挑战。为了降低高外水压对软岩隧洞围岩-支护体系的影响,较常见的工程处理措施为在隧洞周围布置排水结构,以降低洞周外水压力。笔者首先提出了一种简便的隧洞围岩-衬砌结构渗流-应力分析思路。然后,以某过断层带深埋软岩隧洞为研究对象,通过开展隧洞施工期、运行期渗流-应力耦合分析,研究了软岩隧洞排水结构的排水效应。研究发现,在注浆圈和排水结构的综合作用下,隧洞衬砌附近的水力比降较小,注浆圈水力比降较大,使注浆圈承担绝大部分外水荷载,而衬砌承担少部分外水荷载;在软岩和衬砌的变形协调作用下,最终形成注浆圈与衬砌的协同承载效应,有效提高了隧洞的运行安全水平。  相似文献   

16.
隧洞掘进机TBM已逐渐成为水工深埋长隧洞的常规施工方法,而现行规范的围岩分类主要以隧洞围岩稳定性和支护措施为判别因素,仅适用于钻爆法隧洞。为此,梳理国内外不同工程的围岩分类指标体系和TBM施工特点,在隧洞围岩基本分类的基础上,重点分析了TBM掘进效率和不良地质条件,构建了TBM施工适宜性围岩分类方法。总结大量工程案例,综合权衡超硬岩、岩爆、断层破碎带、大变形、突涌水(涌泥)和高外水压力六个关键因素对TBM施工的定量影响,提出了可量化围岩分类指标。工程应用表明,TBM施工适宜性围岩分类方法可依据工程地质资料快捷完成围岩分类,能有效指导TBM隧洞施工,且具有较好的通用性和易用性。  相似文献   

17.
围岩大变形是软岩隧洞建设中危及隧洞施工及长期安全的重大工程灾害之一。结合第三系泥岩隧洞出现的显著围岩大变形及支护结构破坏等现象的工程现场调查,通过开展围岩监测、室内试验及数值模拟等工作,获得了第三系泥岩隧洞围岩大变形的主要成因和发生机理。研究表明:触发该隧洞围岩大变形的主要因素是低岩石强度条件下隧洞开挖卸荷引起的塑性变形以及地下水对围岩的软化作用,围岩挤压膨胀变形和不同岩层间的非一致变形共同主导了支护结构的破坏;围岩大变形的发生机理主要体现在第三系泥岩洞段横穿一条常年流水的冲沟,加之隧洞中部透水性良好的砂砾岩层,使得隧洞开挖后围岩含水率显著增加,第三系泥岩遇水泥化、软化,强度显著降低并呈现出一定的膨胀性,最终促使围岩产生显著的大变形。在此认识的基础上,提出了提高钢拱架型号、增强钢拱架之间的纵向连接、增设底拱外八字锁脚锚管、施加初期支护与二次衬砌之间的聚乙烯缓释消能层等应对措施,实施后的现场监测结果表明,所提出的控制措施有效解决了第三系泥岩洞段开挖过程中的软岩大变形难题。  相似文献   

18.
以位于西昆仑山区的齐热哈塔尔水电站引水发电隧洞高地温洞段为例,初步分析了工程区隧洞高地温洞段大地热流背景及其形成机理,针对隧洞围岩的高地温分布特征,建立典型高地温洞段地质模型,利用有限元软件模拟隧洞施工贯通通水后的围岩岩体温度场,并由此来推断热应力对于围岩稳定性的影响。结果表明,围岩温度90℃以上、空气温度50℃以上的高地温洞段,内外温差大于10℃(里低外高),若采用无衬砌和一次支护方案对高地温洞段围岩进行支护,该洞段内大部分区域的最大主拉应力将超过C25混凝土的抗拉强度,易产生整体拉裂破坏;若采用钢筋混凝土衬砌结构方案,则可以通过增加衬砌结构的配筋量来降低其最大主应力值,此时隧洞围岩及衬砌结构均未出现整体拉裂破坏。研究成果能够为保证该高地温隧洞的安全运行提供可靠的设计依据。  相似文献   

19.
通过分析阳江抽水蓄能电站高压隧洞段的工程地质条件,从隧洞的覆盖层厚度、围岩水力劈裂、围岩渗透稳定性方面进行分析判别,结果高压隧洞段Ⅰ~Ⅱ类围岩满足采用钢筋混凝土衬砌的工程地质条件,但断层和裂隙密集带发育的Ⅲ~Ⅳ类围岩在高水头压力作用下会发生渗透破坏,需专门进行固结灌浆处理。  相似文献   

20.
以分析深埋长隧洞围岩应力和应变为目标,考虑隧洞施工方式,围岩支护形式等因素,通过数值计算,动态模拟隧洞施工过程,获取了黄三段输水隧洞初期支护后的围岩变形情况以及围岩与衬砌相互作用关系。计算结果显示:采用设计的初期支护形式,可有效控制不良洞段的围岩变形,Ⅳ、Ⅴ类围岩最大收敛变形满足规范设计要求。Ⅳ、Ⅴ类围岩与衬砌间的相互作用力随衬砌浇筑时距掌子面距离的增加而降低,但在距掌子面约4倍洞径后降幅微小。通过对比分析经验方法与数值方法所确定围岩压力成果,确定了衬砌结构设计所需的围岩压力指标,为黄三段输水隧洞设计提供了依据,分析方法可为相似工程提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号