首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose an adaptive maximum-likelihood (ML) sequence estimator with RLS channel estimation, which is assisted by forward error control (FEC) coding. The reliable symbols reconstructed in the FEC decoder are used as the feedback signal to the RLS channel estimator. The scheme is compared with decision feedback equalization (DFE) with RLS algorithm, which is assisted by FEC coding. Computer simulations show that in frequency-selective fast fading mobile radio channels, the proposed scheme performs better at moderate Doppler frequencies. It is suitable for four-phase modulation data transmission at the rate of several 10 kb/s in 900 MHz band or in the 1800 MHz band.  相似文献   

2.
We investigate the use of forward-error correction (FEC) as well as concatenated coding for reliable data transmission in asynchronous direct-sequence code-division multiple-access communications over frequency-selective Rayleigh fading channels. The FEC scheme combines antenna diversity with low complexity concatenated codes which consist of a Reed-Solomon outer code and a convolutional inner code. Under this concatenated coding scheme, we analyze the average bit-error rate performance and capacity tradeoffs between various system parameters under a fixed total bandwidth expansion and concatenated codes constraint requirements  相似文献   

3.
针对对流层散射信号的时域衰落特点给出了一种适用于单天线、单发通道和单收通道轻便散射站的新型信号时间分集方法,即将待发送信息符号按等时间间隔多次延迟后重组为一个新的发送序列并共享带宽发出,在接收端对各冗余发送信息进行合并从而获得分集增益。分析了该体制的扩谱隐频率分集作用以及与各种前向纠错编码方法的兼容特性。实测结果表明,在平坦衰落与频率选择性衰落信道中信号的平滑能力均与传统的多天线空间分集体制相当。  相似文献   

4.
The performance of frequency-hopping spread-spectrum systems employing noncoherent reception and transmission diversity is analyzed for frequency-selective Rayleigh fading channels. Two different types of transmission diversity systems, a fast frequency-hopping (FFH) system and a multicarrier frequency-hopping (MCFH) system, are investigated. In order to combine received signals from transmit diversity channels, the optimum diversity combining rule based on the maximum-likelihood criterion is developed. Probability of error equations are derived, and utilized to evaluate the performance of the two systems. The MCFH systems are found to outperform FFH systems when the channel delay spread is severe, while FFH systems are superior to MCFH systems when a channel varies rapidly. Furthermore, it is found that performance enhancement due to an increase of diversity order is more significant for MCFH systems than for FFH systems in frequency-selective fading channels. The effect of frequency-selective fading is also investigated in determining optimum frequency deviations of binary frequency-shift keying signals  相似文献   

5.
This paper considers a satellite network with data messages being transmitted by land mobile users according to slotted Aloha multiple access. The mobile communication links suffering from multipath fading and signal shadowing are modelled as Gilbert-Elliott channels. FEC block coding is used to correct transmission errors. The maximum achievable information throughput and the mean packet delay are derived from a combined analysis of the multiple access and FEC/ARQ protocol. The results show that the additional overhead necessary for FEC is outweighed by the benefit in throughput and delay. Finally, the capture effect and its consequences are discussed.  相似文献   

6.
This paper deals with the problem of efficient transmission of video signals over generalized fading channels in direct sequence-spread spectrum (DS-SS) code division multiple access (CDMA) systems. We first propose a modified version of the H.263 video codec incorporating a selective forward error correction (FEC) coding scheme combined with a forced intra-frame update mechanism. The modified codec results in the improvement of the average video and frame-to-frame performance. We further consider a coherent DS-CDMA system for the forward link (base-to-mobile) in both single-cell and multiple-cell environment. We provide performance evaluation results by both analysis, employing the Gaussian approximation, and computer simulations, using Monte Carlo error counting techniques. By integrating the proposed video codec with a coherent DS-CDMA system based upon the IS-95 standard, we investigate the performance of the video transmission over frequency-selective, correlated Nakagami fading forward-link channels employing a RAKE receiver. To simulate the fading channel, we have implemented in software a correlated Nakagami fading simulator based upon the principle of superposition of complex partial waves, an approach which replicates the wave propagation process in actual physical situations. A variety of performance evaluation results, both in single-cell and multiple-cell environment, are presented for a different number of resolving paths, cell user capacity, signal propagation characteristics, as well as for the presence of channel estimation errors. Heuristic explanations and interpretations of the trend of the obtained results are also given  相似文献   

7.
Coded modulation for noncoherent reception with application to OFDM   总被引:1,自引:0,他引:1  
Power- and bandwidth-efficient differentially encoded transmission over slowly time-varying fading channels with noncoherent reception and without channel state information is considered. For high bandwidth efficiencies, combined phase and amplitude modulation is used. For increased power efficiency, channel coding and multiple-symbol differential detection are applied, i.e., interleaving and detection are based on blocks of N>2 consecutive symbols. The presented concepts are directly applicable to transmission over flat fading channels. However, concentrating on the situation of frequency-selective channels, we consider their application to multicarrier transmission using orthogonal frequency-division multiplexing (OFDM). When coding across subcarriers, OFDM transforms the actual frequency-selective channel into a slowly time-varying frequency-nonselective fading channel. This paper presents a design for multilevel coding schemes to approach theoretical limits for power- and bandwidth-efficient noncoherent transmission over the equivalent fading channel. It is shown that bit-interleaved coded modulation, which relies on Gray labeling, is competitive only in the case of conventional differential detection with N=2. The theoretic considerations are well approved by simulation results, where turbo codes are applied as component codes  相似文献   

8.
In this article, the normalized throughput and the normalized average delay for the transport layer at the reverse link of multicellular CDMA systems are obtained. For the transport layer the Transport Control Protocol (TCP) with consecutive retransmissions control is employed. On the radio link layer three TCP error control strategies are evaluated and compared. The first strategy is based on the radio-link-protocol (RLP), which breaks down the TCP packets into smaller blocks and uses an error detecting procedure to protect those RLP blocks. The second strategy uses forward-error-control (FEC) procedure at the radio link layer. In this case, two kinds of FEC are compared: convolutional and turbo coding. The third one is a hybrid between the first and second strategies with coding at the RLP layer. A frequency-selective Rayleigh fading channel with shadowing and power control loop error is considered.  相似文献   

9.
The so-called irreducible error due to frequency-selective fading is known to have a serious effect on mobile radio communication systems. Thus, the analysis of such errors is a prerequisite for making high-speed digital signal transmission over a fading channel feasible. The authors attempted to elucidate the physical mechanisms causing such errors using laboratory measurements of microscopic bit error rate. The results clarified some sources of burst errors in a multipath fading channel. In particular, large and rapid timing fluctuations of eye pattern due to severe delay distortion of the multipath channel was found to be the most dominant source of error  相似文献   

10.
Orthogonal Frequency Division Multiplexing (OFDM) systems are commonly used to mitigate frequency-selective multipath fading and provide high-speed data transmission. In this paper, we derive new union bounds on the error probability of a coded OFDM system in wireless environments. In particular, we consider convolutionally coded OFDM systems employing single and multiple transmit antennas over correlated block fading (CBF) channels with perfect channel state information (CSI). Results show that the new union bound is tight to simulation results. In addition, the bound accurately captures the effect of the correlation between sub-carriers channels. It is shown that as the channel becomes more frequency-selective, the performance get better due to the increased frequency diversity. Moreover, the bound also captures the effect of multi-antenna as space diversity. The proposed bounds can be applied for coded OFDM systems employing different coding schemes over different channel models.  相似文献   

11.
在高速无线数据传输中,存在严重的多径衰落,造成频率选择性衰落和符号间干扰,影响数据传输质量。单载波频域均衡(Single Carrier Time-Domain Equalization,SC-FDE)是对抗多径衰落的有效途径之一。重点分析了SC-FDE系统的帧结构设计,通过分析对比,找到一种合适的帧结构设计方案,并对其性能进行了仿真。仿真结果表明该帧结构设计方案能够有效抑制噪声的影响,提高信道估计精度,同时不影响系统的带宽利用率。  相似文献   

12.
We investigate the effects of correlation on the performance of diversity systems in wideband wireless radio environments. Specifically, the average bit error rate (BER) performance of M-ary differential phase shift keying (MDPSK) on correlated frequency-selective slow Rayleigh fading channels is analyzed. A two-branch diversity receiver with postdetection equal gain combining is considered. Nyquist pulse shaping is used and differential detection is employed at the receiver. The effects of cochannel interference on the system performance are assessed using a Gaussian interference model. To further enhance the system performance, the effects of combined diversity and forward error correction (FEC) coding on the average BER are investigated. Results using short cyclic block codes with perfect bit interleaving are obtained. The effects of the root mean square (RMS) delay spread, the amount of correlation, and the level of modulation, M, on the average BER are investigated in detail for both coded and uncoded systems. The results show that dual branch diversity combining with a correlation coefficient of 0.5 outperforms (in terms of BER) short block codes with perfect bit interleaving, and that combined diversity and coding strategies are effective in combatting the effects of frequency-selective fading  相似文献   

13.
We study space-time block coding for single-carrier block transmissions over frequency-selective multipath fading channels. We propose novel transmission schemes that achieve a maximum diversity of order N/sub t/N/sub r/(L+1) in rich scattering environments, where N/sub t/ (N/sub r/) is the number of transmit (receive) antennas, and L is the order of the finite impulse response (FIR) channels. We show that linear receiver processing collects full antenna diversity, while the overall complexity remains comparable to that of single-antenna transmissions over frequency-selective channels. We develop transmissions enabling maximum-likelihood optimal decoding based on Viterbi's ( 1998) algorithm, as well as turbo decoding. With single receive and two transmit antennas, the proposed transmission format is capacity achieving. Simulation results demonstrate that joint exploitation of space-multipath diversity leads to significantly improved performance in the presence of frequency-selective fading channels.  相似文献   

14.
Fading in mobile satellite communications severely degrades the performance of data transmission. The channel is modeled with nonfrequency selective Rice and Rayleigh fading. Also, stored channel simulation is used for hardware data transmission. FEC coding with Viterbi decoding of convolutional codes, and Berlekamp-Massey decoding of Reed-Solomon codes, are used to compensate for the fading. In addition to interleaving, channel state and erasure information improve the performance of the decoder. The BER after decoding is calculated for specific codes on several channels and for different transmission schemes. Using very simple channel state and erasure information gives 2-7 dB additional coding gain. These gains have been verified by hardware data transmission on synthetic fading channels and stored mobile satellite channels.  相似文献   

15.
Turbo equalization that cooperates with channel prediction and iterative channel estimation is investigated for mobile wireless communications. Frames of information bits are encoded, interleaved, and mapped to symbols for transmission over time-varying frequency-selective fading channels. At the receiver, the Turbo equalizer consists of a maximum a posteriori probability equalizer/demapper and a soft-input soft-output maximum a posteriori probability decoder. With initial channel estimates and sparse pilot insertion across a number of frames, the receiver predicts the channel of the current frame. The effect of error propagation of channel prediction is mitigated by the de-interleaver that is embedded in the Turbo equalizer. The predicted and interpolated channel is refined through a channel estimator that uses the soft estimates of data symbols at each Turbo iteration. Due to the bandlimiting feature of channel variation, the channel estimation error can be smoothed by low-pass filters that follow the channel estimator. Simulation results show that incorporating Turbo equalization with channel prediction and iterative channel estimation can combat time- and frequency-selective fading and improve reception performance.  相似文献   

16.
时变频率选择性衰落信道中,针对二维扩频系统提出了一种时频码片级差分检测方法,并进行了误码率分析,同时进行了仿真验证.分析和仿真结果表明,时频码片级差分检测同时具有抵抗信道频率选择性和时间选择性衰落的能力,在选择性衰落信道中的性能优于平坦衰落信道中的性能.通过性能对比发现,时频码片级差分检测相对多载波扩频码片级差分检测能够更加有效地降低了载波间干扰对系统性能的影响.  相似文献   

17.
In this paper, we study the effect of finite-power, phase-locked loop based phase noise on the bit-error-rate (BER) performance of orthogonal frequency division multiplexing (OFDM) systems in frequency-selective fading channels. It is well known the impact of phase noise on the performance of an OFDM system can be divided into a multiplicative term called common phase error (CPE) and an additive term called intercarrier interference (ICI). Based on the conditional Gaussian approximation technique, we first derive the BER formulas for BPSK, QPSK, 16-QAM, and 64-QAM modulated OFDM signals in frequency-selective Rayleigh fading channels. To further quantify the individual influence of the CPE and the ICI on system performance for different phase noise spectra, we derive the BER expressions for perfect CPE compensation cases. The analytical results obtained for frequency-selective Rayleigh fading channels are then generalized to frequency-selective Rician fading channels. Simulation results not only validate the accuracy of our analysis but also show the dependency of BERs on the shapes of phase noise spectra.  相似文献   

18.
The next-generation wireless communication systems are expected to support high-speed data transmission. Associated with high transmission rates, however, is the problem of multipath intersymbol interference (ISI) due to frequency-selective fading. Decision feedback equalization (DFE) and antenna diversity combining are two practical techniques for combating multipath ISI. Through simulations we investigate the performance of diversity combining, together with DFE, under various numbers of antenna branches and equalization taps, in a quasistationary frequency-selective fading environment with additive white Gaussian noise (AWGN) and cochannel interference (CCI). We consider joint optimization combining and power selection diversity combining. We simulate the combiner, using quaternary phase shift keying (QPSK) modulation with up to four antenna branches. Our results show that using antenna diversity and DFE with joint optimization combining provides performance improvement with lower computational complexity, as compared to that of using either DFE or diversity combining alone for combating ISI  相似文献   

19.
该文提出一种应用于VHF-FM频段的数字调频广播(DFM)的模式自适应的OFDM参数设计方法,根据信道的多普勒频移范围设计了两种传输模式。为了有效抵抗频率选择性衰落,需要合理设置OFDM码元循环前缀和有用数据部分长度之比;合理地选择有用数据部分长度,使得不仅能在有限带宽内得到尽可能多的子载波还能降低对多普勒频移的敏感性;考虑到可用子载波个数对工程实现复杂度和数据传输效率的影响,通过合理设置以实现两者间的良好折中。通过与有着相同信道模型的DRM-Plus系统参数建议相比,该方法不仅能抵抗频率选择性衰落,而且具有多普勒频移敏感性更低、工程实现复杂度更低和数据传输效率更高的优点。利用现有时域同步捕获算法仿真,表明所设计的参数在DFM系统中具有可用性。  相似文献   

20.
This paper proposes a complexity-reduced decision feedback equalizer (DFE) for 16-ary quadrature amplitude modulation (16QAM) using tap gain interpolation, bi-directional equalizing (BDE) and space diversity combining (SDC) to achieve high spectral efficiency and high quality data transmission over frequency-selective fading channels in land mobile communications. To reduce the amount of computation required for BDE and SDC, we propose a tap gain interpolation scheme and pre-decision schemes for both processes. Computer simulation of a (16QAM/TDMA system) confirms that the proposed scheme improves frequency-selective fading compensation performance by 6 dB or more while using only 27% of the computation of conventional single branch DFE receivers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号