共查询到20条相似文献,搜索用时 9 毫秒
1.
基于改进PSO的LSSVM参数优化在变压器故障诊断中的应用 总被引:2,自引:0,他引:2
提出了一种基于最小二乘支持向量机的变压器故障诊断的智能方法.为了提高故障诊断的精确度,利用改进粒子群算法来对最小二乘支持向量机进行参数优化,改进后的粒子群算法能够较好地调整算法的全局与局部搜索能力之间的平衡.试验结果证明:该方法不仅能够取得良好的分类效果,而且诊断速度与精度高于传统支持向量机和BP神经网络,更适合在变压器故障诊断中应用. 相似文献
2.
为了提高风电场风速短期预测的精确性,提出了基于粒子群算法优化最小二乘支持向量机的预测方法。首先求出风速时间序列的嵌入维数和延迟时间,进而对混沌风速时间序列进行相空间重构。利用粒子群算法对最小二乘支持向量机进行参数优化,然后利用优化后的最小二乘支持向量机模型对相空间重构后的风速时间序列进行预测,预测结果表明基于粒子群优化的最小二乘支持向量机的预测效果满足了精度要求。同时运用了支持向量机和BP神经网络模型进行预测,仿真结果表明,基于粒子群优化的最小二乘支持向量机预测方法具有预测精度高,预测速度快的优点,因此具有很高的工程实际应用意义。 相似文献
3.
为了提高异步电动机振动故障诊断的准确性,提出了基于粒子群算法优化最小二乘支持向量机的异步电动机振动故障诊断方法。先通过实验室对异步电动机各类故障的振动进行测试,对测试数据进行预处理,选择异步电动机不同位置振动信号的特征频率作为系统的输入,然后利用训练好的粒子群算法优化后的最小二乘支持向量机进行异步电动机振动的故障诊断。最终结果与其他诊断方法对比表明:该方法克服了样本训练时间较长并容易陷入局部收敛的缺点,同时诊断的准确率较高,有效地避免了异步电动机故障的误诊断。 相似文献
4.
基于改进PSO—BP算法的变压器故障诊断 总被引:4,自引:1,他引:4
提出一种利用改进粒子群算法和反向传播算法相结合的混合算法训练神经网络进行电力变压器故障诊断的方法.在改进的粒子群算法中考虑了邻居粒子中最优粒子信息,修正个体行动策略,增强粒子群的社会学习功能,保证全局搜索的有效性;引入随机粒子群机制,利用粒子群进化过程中的种群变异机制提高算法的寻优性能.变压器故障实例仿真和分析表明,该算法在收敛速度、计算精度和平均收敛性能方面都有较大改进,可有效诊断电力变压器故障. 相似文献
5.
针对当前电力变压器故障诊断效率低、误差大的难题,提出了基于参数优化的电力变压器故障诊断模型。首先提取电力变压器故障的特征,将其作为最小二乘支持向量机输入,电力变压器故障类型作为输出,然后采用最小二乘支持向量机对电力变压器的故障诊断样本进行学习,构建电力变压器故障识别的分类器,并引入混沌粒子群算法对最小二乘支持向量机的参数进行优化,最后进行了电力变压器故障诊断的仿真对比测试。测试结果表明,本文模型可以准确辨识各种类型的电力变压器故障,获得较高正确率的变压器故障诊断结果,电力变压器故障诊断的速度,而且电力变压器故障诊断整体性能要优于当前其它电力变压器故障诊断模型。 相似文献
6.
7.
针对概率神经网络(PNN)及遗传算法(GA)在变压器内部故障诊断中存在的不足,提出了一种基于粒子群算法(PSO)改进径向基概率神经网络(RBPNN)的故障诊断方法。首先,引入RBPNN,选取反向传播作为学习算法以及油中溶解气体含量比值作为故障特征量。然后,由于该模型受网络结构和初值影响较大,故拟用GA、PSO和改进的PSO对网络优化并测试。通过对比分析,得出改进的PSO在确定拓扑结构、降低误差精度、加快收敛速度和提高预测准确度上更占优势的结论,同时证明了所提方法在故障诊断中的正确性和可行性。 相似文献
8.
9.
10.
针对变压器故障征兆和故障类型的非线性特性,结合油中气体分析法,设计了一种改进粒子群算法的小波神经网络故障诊断模型。模型采用3层小波神经网络,并用一种改进粒子群算法对其进行训练。该算法在标准粒子群算法的基础上,通过引入遗传算法中的变异算子、惯性权重因子和高斯加权的全局极值,加快了小波神经网络训练速度,提高了其训练的精度。仿真实验证明这种改进粒子群算法的小波神经网络可以有效地运用到变压器故障诊断中,为变压器故障诊断提供了一条新途径。 相似文献
11.
改进粒子群优化神经网络在变压器故障诊断中的应用 总被引:1,自引:3,他引:1
变压器绕组早期故障的诊断是实现安全生产、避免大事故的技术前提。由于变压器器身振动信号包含有丰富的信息,所以可以通过监测变压器振动信号来预估绕组的状况。笔者首先利用小波包分解原理将变压器振动信号分解到不同的频段中,然后计算各频段的能量熵值,并将其作为BP神经网络的输入向量,同时利用改进粒子群算法(IPSO)对BP神经网络进行优化。最后利用训练好的BP神经网络对变压器进行故障诊断。试验结果表明:与传统BP神经网络法和PSO-BP神经网络方法相比,该方法克服了BP神经网络的一些缺陷,具有较快的收敛速度和较高的诊断精度,对变压器绕组的早期故障具有良好的预测能力。 相似文献
12.
13.
基于贝叶斯推断LSSVM的滚动轴承故障诊断 总被引:4,自引:3,他引:4
针对传统最小二乘支持向量机分类器的参数选择具有随意性和不确定性等不足,采用贝叶斯推断方法通过三级分层推断优化确定最小二乘支持向量机的各参数,有效提高了最小二乘支持向量机的建模效率.将基于贝叶斯推断最小二乘支持向量机分类方法应用于滚动轴承故障诊断中,实验仿真结果表明该方法能有效地识别滚动轴承的故障,且训练时间和测试时间均小于传统最小二乘支持向量机方法。 相似文献
14.
15.
基于粒子群优化神经网络的变压器故障诊断 总被引:6,自引:2,他引:6
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。 相似文献
16.
研究了电力变压器有载分接开关的故障诊断问题。对变压器分接开关的故障特性及原因分析后,考虑到传统支持向量机在诊断过程中效率低下、精确度差等缺点,提出了一种改进粒子群(PSO)优化支持向量机(SVM)的故障诊断方法。首先,对粒子群算法的惯性权值和学习因子做了相应改进,克服了PSO算法后期迭代精度不高的缺点;然后,利用改进后的PSO算法优化支持向量机的主要参数;最后,仿真结果表明,改进的PSO SVM算法的诊断精度和速度均高于传统诊断方法,更适合在变压器分接开关诊断中应用。 相似文献
17.
18.
19.
利用改进遗传算法与LS-SVM进行变压器故障诊断 总被引:3,自引:0,他引:3
最小二乘支持向量机(least square support vector machines,LS-SVM)能较好地解决小样本、非线性数据特征的多分类问题,适用于电力变压器油色谱故障诊断,但参数c与σ2的选取对诊断结果影响较大,因此有必要对其进行优化选择。文中利用改进遗传算法(improved genetic algorithm,IGA)对c与σ2参数进行寻优。IGA采用了编码机制随机产生初始种群,这样可快速扩大搜索空间,稳定群体中个体多样性,有效提高全局搜索能力和收敛速度。文中采用IGA优化后的LS-SVM对多组变压器油色谱数据进行故障诊断分析。结果表明,IGA可以有效实现对LS-SVM算法中c与σ2的优化选取,提高变压器故障诊断的准确率。 相似文献
20.
为了提高短期风功率预测精度,采用惯性权系数、粒子初始化规则调整和越界粒子变异操作等策略对粒子群—差分进化(Particle Swarm Optimization-Differential Evolution,PSO-DE)融合算法进行改进,形成改进PSO-DE融合算法,从而提高改进PSO-DE融合算法的优化性能。采用改进PSO-DE融合算法对最小二乘支持向量机进行优化,建立基于改进PSO-DE融合算法优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的短期风功率预测模型。采用风电场实际运行数据进行算例分析,结果表明,PSO-DE融合算法能够减少迭代次数,提高收敛精度,基于改进PSO-DE融合算法优化LSSVM的风功率预测模型的平均相对误差、全局最大误差和均方根误差分别为3.26%、5.97%和13.53,预测精度高于其他几种风功率预测方法,验证了所提出的改进策略及短期风功率预测模型的正确性。 相似文献