首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

2.
We consider the following problem. For a binary tree T = (V, E) where V = {1, 2, ..., n}, given its inorder traversal and either its preorder or its postorder traversal, reconstruct the binary tree. We present a new parallel algorithm for this problem. Our algorithm requires O(n) space. The main idea of our algorithm is to reduce the reconstruction process to merging two sorted sequences. With the best parallel merging algorithms, our algorithm can be implemented in O(log log n) time using O(n/log log n) processors on the CREW PRAM (or in O(log n) time using O(n/log n) processors on the EREW PRAM). Our result provides one more example of a fundamental problem which can be solved by optimal parallel algorithms in O(log log n)time on the CREW PRAM.  相似文献   

3.
The problem of merging two sorted arrays A = (a1, a2, ..., an1) and B = (b1, b2, ..., bn2) is considered. For input elements that are drawn from a domain of integers [1...s] we present an algorithm that runs in O(log log log s) time using n/log log log s CREW PRAM processors (optimal speed-up) and O(nsε) space, where n = n1 + n2. For input elements that are drawn from a domain of integers [1...n] we present a second algorithm that runs in O(α(n)) time (where α(n) is the inverse of Ackermann′s function) using n/α(n) CREW PRAM processors and linear space. This second algorithm is non-uniform; however, it can be made uniform at a price of a certain loss of speed, or by using a CRCW PRAM.  相似文献   

4.
It is well known that, using standard models of computation, Ω(n logn) time is required to build a Voronoi diagram forn point sites. This follows from the fact that a Voronoi diagram algorithm can be used to sort. However, if the sites are sorted before we start, can the Voronoi diagram be built any faster? We show that for certain interesting, although nonstandard, types of Voronoi diagrams, sorting helps. These nonstandard types of Voronoi diagrams use a convex distance function instead of the standard Euclidean distance. A convex distance function exists for any convex shape, but the distance functions based on polygons (especially triangles) lead to particularly efficient Voronoi diagram algorithms. Specifically, a Voronoi diagram using a convex distance function based on a triangle can be built inO (n log logn) time after initially sorting then sites twice. Convex distance functions based on other polygons require more initial sorting.  相似文献   

5.
Given two sorted arrays \({A=(a_1,a_2,\ldots ,a_{n_1})}\) and \({B=(b_1,b_2,\ldots ,b_{n_2})}\), where their elements are drawn from a linear range in n and n = Max(n 1, n 2). The merging of two sorted arrays is one of the fundamental problems in computer science. The main contribution of this work is to give a new merging algorithm on a EREW PRAM. The algorithm is cost optimal, deterministic and simple. The algorithm uses \({\frac{n}{\log{n}}}\) processors and O(n) storage. We also give the conditions that make the algorithm run in a constant time on a EREW PRAM.  相似文献   

6.
LetG(V,E) be a simple undirected graph with a maximum vertex degree Δ(G) (or Δ for short), |V| =nand |E| =m. An edge-coloring ofGis an assignment to each edge inGa color such that all edges sharing a common vertex have different colors. The minimum number of colors needed is denoted by χ′(G) (called thechromatic index). For a simple graphG, it is known that Δ ≤ χ′(G) ≤ Δ + 1. This paper studies two edge-coloring problems. The first problem is to perform edge-coloring for an existing edge-colored graphGwith Δ + 1 colors stemming from the addition of a new vertex intoG. The proposed parallel algorithm for this problem runs inO3/2log3Δ + Δ logn) time usingO(max{nΔ, Δ3}) processors. The second problem is to color the edges of a given uncolored graphGwith Δ + 1 colors. For this problem, our first parallel algorithm requiresO5.5log3Δ logn+ Δ5log4n) time andO(max{n2Δ,nΔ3}) processors, which is a slight improvement on the algorithm by H. J. Karloff and D. B. Shmoys [J. Algorithms8 (1987), 39–52]. Their algorithm costsO6log4n) time andO(n2Δ) processors if we use the fastest known algorithm for finding maximal independent sets by M. Goldberg and T. Spencer [SIAM J. Discrete Math.2 (1989), 322–328]. Our second algorithm requiresO4.5log3Δ logn+ Δ4log4n) time andO(max{n2,nΔ3}) processors. Finally, we present our third algorithm by incorporating the second algorithm as a subroutine. This algorithm requiresO3.5log3Δ logn+ Δ3log4n) time andO(max{n2log Δ,nΔ3}) processors, which improves, by anO2.5) factor in time, on Karloff and Shmoys' algorithm. All of these algorithms run in the COMMON CRCW PRAM model.  相似文献   

7.
This paper focuses on a linear array ofnnodes withmultiple shared busesas a practically feasible model for parallel processing. Letkbe the number of shared buses. A nonoblivious scheme for mutually exclusive access tokshared buses is proposed. The effectiveness of the scheme is demonstrated by proposing an algorithm for solving a partial sort problem, which can be efficiently executed on the array according to the scheme. Thepartial sort problemwith parametermis the problem of sorting a subsetS′ of a given setS, whereS′ is the set of elements less than or equal to themth smallest element inS. Ifm= 1, then it is solved by an algorithm for finding the smallest element inS, and ifm=n, then it is solved by adapting normal sorting algorithm. The time complexity (9m/k) log2log2n+ 3.467[formula]+O(m/k+ (n/k)1/4) of the proposed algorithm matches a lower bound Ω ([formula]+m/k) with respect tonandk, ifmis small enough to satisfym=O([formula]/log logn).  相似文献   

8.
Rex A. Dwyer 《Algorithmica》1987,2(1-4):137-151
An easily implemented modification to the divide-and-conquer algorithm for computing the Delaunay triangulation ofn sites in the plane is presented. The change reduces its Θ(n logn) expected running time toO(n log logn) for a large class of distributions that includes the uniform distribution in the unit square. Experimental evidence presented demonstrates that the modified algorithm performs very well forn≤216, the range of the experiments. It is conjectured that the average number of edges it creates—a good measure of its efficiency—is no more than twice optimal forn less than seven trillion. The improvement is shown to extend to the computation of the Delaunay triangulation in theL p metric for 1<p≤∞.  相似文献   

9.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1-4):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.  相似文献   

10.
Dana Richards 《Algorithmica》1989,4(1-4):191-207
A fundamental problem in circuit design is how to connectn points in the plane, to make them electrically common using the least amount of wire. The tree formed, a Steiner tree, is usually constructed with respect to the rectilinear metric. The problem is known to be NP-complete; an extensive review of proposed heuristics is given. An early algorithm by Hanan is shown to have anO(n logn) time implementation using computational geometry techniques. The algorithm can be modified to do sequential searching inO(n 2) total time. However, it is shown that the latter approach runs inO(n 3/2) expected time, forn points selected from anm×m grid. Empirical results are presented for problems up to 10,000 points.  相似文献   

11.
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take Θ(n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].  相似文献   

12.
We consider the following circle placement problem: given a set of pointsp i ,i=1,2, ...,n, each of weightw i , in the plane, and a fixed disk of radiusr, find a location to place the disk such that the total weight of the points covered by the disk is maximized. The problem is equivalent to the so-called maximum weighted clique problem for circle intersection graphs. That is, given a setS ofn circles,D i ,i=1,2, ...,n, of the same radiusr, each of weightw i , find a subset ofS whose common intersection is nonempty and whose total weight is maximum. AnO (n 2) algorithm is presented for the maximum clique problem. The algorithm is better than a previously known algorithm which is based on sorting and runs inO (n 2 logn) time.  相似文献   

13.
We consider the problem of sorting n integers when the elements are drawn from the restricted domain [1...n]. A new deterministic parallel algorithm for sorting n integers is obtained. Its running time is O(lognlog(n/logn)) using n/logn processors on EREW (exclusive read exclusive write) PRAM (parallel random access machine). Also, our algorithm was modified to become optimal when we use processors. This algorithm belongs to class EP (Efficient, Polynomial fast).  相似文献   

14.
We present a new hidden-line elemination technique for displaying the perspective view of a scene of three-dimensional isothetic parallelepipeds (3D-rectangles). We assume that the 3D-rectangles are totally ordered based upon the dominance relation of occlusion. The perspective view is generated incrementally, starting with the closest 3D-rectangle and proceeding away from the view point. Our algorithm is scene-sensitive and uses0((n +d) logn log logn) time, wheren is the number of 3D-rectangles andd is the number of edges of the display. This improves over the heretofore best known technique. The primary data structure is an efficient alternative to dynamic fractional cascading for use with augmented segment and range trees when the universe is fixed beforehand. It supports queries inO((logn +k) log logn) time, wherek is the size of the response, and insertions and deletions inO(logn log logn) time, all in the worst case.  相似文献   

15.
We present a parallel priority queue that supports the following operations in constant time:parallel insertionof a sequence of elements ordered according to key,parallel decrease keyfor a sequence of elements ordered according to key,deletion of the minimum key element, anddeletion of an arbitrary element. Our data structure is the first to support multi-insertion and multi-decrease key in constant time. The priority queue can be implemented on the EREW PRAM and can perform any sequence ofnoperations inO(n) time andO(mlogn) work,mbeing the total number of keyes inserted and/or updated. A main application is a parallel implementation of Dijkstra's algorithm for the single-source shortest path problem, which runs inO(n) time andO(mlogn) work on a CREW PRAM on graphs withnvertices andmedges. This is a logarithmic factor improvement in the running time compared with previous approaches.  相似文献   

16.
We present a randomized and a deterministic data structure for maintaining a dynamic family of sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting existing sequences. Both data structures support equality tests inO(1) time. The randomized version supports new sequence creations inO(log2 n) expected time wheren is the length of the sequence created. The deterministic solution supports sequence creations inO(logn(logmlog* m+logn)) time for themth operation. This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project ALCOM II).  相似文献   

17.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

18.
We present a simple parallel algorithm for computing the greatest common divisor (gcd) of twon-bit integers in the Common version of the CRCW model of computation. The run-time of the algorithm in terms of bit operations isO(n/logn), usingn 1+? processors, where ? is any positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only sublinear algorithm known previously, both in run time and in number of processors; they requireO(n log logn/logn),n 2 log2 n, respectively, in the same CRCW model. We give an alternative implementation of our algorithm in the CREW model. Its run-time isO(n log logn/logn), usingn 1+? processors. Both implementations can be modified to yield the extended gcd, within the same complexity bounds.  相似文献   

19.
A new scheme for the deterministic simulation of PRAMs in VLSI   总被引:3,自引:0,他引:3  
A deterministic scheme for the simulation of (n, m)-PRAM computation is devised. Each PRAM step is simulated on a bounded degree network consisting of a mesh-of-trees (MT) of siden. The memory is subdivided inn modules, each local to a PRAM processor. The roots of the MT contain these processors and the memory modules, while the otherO(n 2) nodes have the mere capabilities of packet switchers and one-bit comparators. The simulation algorithm makes a crucial use of pipelining on the MT, and attains a time complexity ofO(log2 n/log logn). The best previous time bound wasO(log2 n) on a different interconnection network withn processors. While the previous simulation schemes use an intermediate MPC model, which is in turn simulated on a bounded degree network, our method performs the simulation directly with a simple algorithm.This work has been supported in part by Ministero della Pubblica Istruzione of Italy under a research grant.  相似文献   

20.
Parallel integer sorting using small operations   总被引:1,自引:0,他引:1  
We consider the problem of sortingn integers in the range [0,n c -1], wherec is a constant. It has been shown by Rajasekaran and Sen [14] that this problem can be solved optimally inO(logn) steps on an EREW PRAM withO(n) n -bit operations, for any constant >O. Though the number of operations is optimal, each operation is very large. In this paper, we show thatn integers in the range [0,n c -1] can be sorted inO(logn) time withO(nlogn)O(1)-bit operations andO(n) O(logn)-bit operations. The model used is a non-standard variant of an EREW PRAMtthat permits processors to have word-sizes ofO(1)-bits and (logn)-bits. Clearly, the speed of the proposed algorithm is optimal. Considering that the input to the problem consists ofO (n logn) bits, the proposed algorithm performs an optimal amount of work, measured at the bit level.This work was partially supported by The Northeast Parallel Architectures Center (NPAC) at Syracuse University, Syracuse, NY 13244 and The Rome Air Development Center, under contract F30602-88-D-0027.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号