首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
糖尿病性视网膜病变是一种难以诊断、高风险的致盲性疾病.针对人工对图像特征提取困难、分类准确性差、耗费时间长的问题,采用卷积神经网络构建糖尿病性视网膜病变自动分类器具有重要的临床价值.方法:本文针对已收集好的彩色眼底图像,通过对图像的清洗、扩增、归一化构建糖尿病性视网膜病变数据集.利用VGG16与FCN的优点将其结合,将...  相似文献   

2.
糖尿病视网膜病变是世界上致盲率最高的眼科疾病,早期诊断可以显著降低患者失明的概率。深度学习方法可以提取医学图像的隐含特征,并完成图像的检测任务,因此应用深度学习实现糖尿病视网膜病灶检测成为研究热点。主要从数据集介绍、全监督检测方法、非完全监督检测方法、小样本问题的处理和模型可解释性五个方面进行详细总结,重点整理各类方法的基本思想、网络结构形式、改进方案及优缺点总结等内容,结合当前检测方法所面临的挑战,对其未来研究方向进行展望。  相似文献   

3.
近年来,糖尿病视网膜病变(diabetic retinopathy, DR)成为全球失明人口增加的主要原因,早期的DR严重程度分级对防止DR患者视力丧失尤为重要.由于糖尿病患者数量的逐年上升, DR分级的需求量也不断增加,然而传统的人工分级不能满足日益增长的需求,且人工分级耗时费力.深度学习技术的发展,为DR检测和分级提供了高效率且更可靠的手段.虽然,目前的DR二元检测已经取得十分好的效果,然而由于糖尿病视网膜病变的复杂性和病变程度之间的差距细微, DR严重程度分级仍然是一个具有挑战性的问题.本文对近年来涌现的DR分级方法进行了研究和总结:介绍了基于VGG、InceptionNet、ResNet、EfficientNet、DenseNet、CapsNet模型的6种深度学习分级方法;并介绍了基于多网络融合的DR分级方法;最后对基于深度学习的DR分级方法的研究趋势进行总结和展望.  相似文献   

4.
糖尿病视网膜病变是导致糖尿病患者视力受损的主要原因之一,早期的分类诊断对于病情的治疗与控制具有重要意义。深度学习方法能够自动提取视网膜病变的特征并进行分类,因此成为糖尿病视网膜病变分类的重要工具。介绍常用的糖尿病视网膜病变数据集及评价指标,总结了深度学习在糖尿病视网膜病变二分类中的应用;综述了不同的经典深度学习模型在糖尿病视网膜病变严重程度分类中的应用,重点阐述卷积神经网络的分类诊断方法,并对不同方法进行综合对比分析;最后讨论该领域面临的挑战,并对未来发展方向进行了展望。  相似文献   

5.
目的 糖尿病性视网膜病变(DR)是目前比较严重的一种致盲眼病,因此,对糖尿病性视网膜病理图像的自动分类具有重要的临床应用价值。基于人工分类视网膜图像的方法存在判别性特征提取困难、分类性能差、耗时费力且很难得到客观统一的医疗诊断等问题,为此,提出一种基于卷积神经网络和分类器的视网膜病理图像自动分类系统。方法 首先,结合现有的视网膜图像的特点,对图像进行去噪、数据扩增、归一化等预处理操作;其次,在AlexNet网络的基础上,在网络的每一个卷积层和全连接层前引入一个批归一化层,得到一个网络层次更复杂的深度卷积神经网络BNnet。BNnet网络用于视网膜图像的特征提取网络,对其训练时采用迁移学习的策略利用ILSVRC2012数据集对BNnet网络进行预训练,再将训练得到的模型迁移到视网膜图像上再学习,提取用于视网膜分类的深度特征;最后,将提取的特征输入一个由全连接层组成的深度分类器将视网膜图像分为正常的视网膜图像、轻微病变的视网膜图像、中度病变的视网膜图像等5类。结果 实验结果表明,本文方法的分类准确率可达0.93,优于传统的直接训练方法,且具有较好的鲁棒性和泛化性。结论 本文提出的视网膜病理图像分类框架有效地避免了人工特征提取和图像分类的局限性,同时也解决了样本数据不足而导致的过拟合问题。  相似文献   

6.
7.
目的 传统的糖尿病视网膜病变(糖网)(diabetic retinopathy, DR)依赖于早期病理特征的精确检测,但由于数据集缺乏病灶标记区域导致无法有效地建立监督性分类模型,引入其他辅助数据集又会出现跨域数据异质性问题;另外,现有的糖网诊断方法大多无法直观地从语义上解释医学模型预测的结果。基于此,本文提出一种端到端式结合域适应学习的糖网自动多分类方法,该方法协同注意力机制和弱监督学习加强优化。方法 首先,利用已标记病灶区域的辅助数据训练病灶检测模型,再将目标域数据集的糖网诊断转化为弱监督学习问题,依靠多分类预测结果指导深度跨域生成对抗网络模型,提升跨域的样本图像质量,用于微调病灶检测模型,进而过滤目标域中一些无关的病灶样本,提升多分类分级诊断性能。最后,在整体模型中融合注意力机制,从医学病理诊断角度提供可解释性支持其分类决策。结果 在公开数据集Messidor上进行糖网多分类评估实验,本文方法获得了71.2%的平均准确率和80.8%的AUC(area under curve)值,相比于其他多种方法具有很大优势,可以辅助医生进行临床眼底筛查。结论 结合域适应学习的糖网分类方法在没有...  相似文献   

8.
深度学习可以有效提取图像隐含特征,在医学影像识别方面的应用快速发展. 由于糖尿病视网膜病变(Diabetic retinopathy, DR)诊断标准明确、分类体系成熟,应用深度学习诊断糖尿病视网膜病变近年来成为研究热点. 本文从深度学习方法在DR诊断中的最新研究进展、DR诊断的一般流程、公共数据集、医学影像标注方法、主要实现模型、面临的主要挑战几方面, 对深度学习方法在糖尿病视网膜病变诊断中的应用进行了详细综述, 便于更多机器视觉、尤其是深度学习医学影像的研究者们参照对比,加快该领域研究的成熟度和临床落地应用.  相似文献   

9.
为解决医学上糖尿病性视网膜病变图像人工识别困难、精度差等问题,提出一种基于多特征融合的卷积神经网络识别方法。在VGG-16模型的基础上,通过融合每层网络上的局部特征,增强模型的特征提取能力。选用Softmax分类器,使病变图像识别更加准确。使用OpenCV图像处理工具采用加噪、上下左右不同角度翻转、调节对比度等5种方式扩充训练集。实验结果表明,基于多特征融合的深度学习框架图像识别系统在数据集上的平均识别精度达到94.23%,相较于Alex-Net、Google-Net、Compact-Net、ResNet-101等模型分别提高了10.56%、7.80%、6.01%、0.02%,验证了该方法的有效性。该模型具有很好的鲁棒性。  相似文献   

10.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。  相似文献   

11.
糖尿病眼底病变(Diabetic Retinopathy,DR)是糖尿病患者常见的致盲疾病,可使用深度学习算法对患者的糖尿病眼底图片进行图像识别,实现对糖尿病眼底病变的辅助诊断。针对以往普通卷积神经网络只能进行分类和输入尺寸固定的问题,提出了基于目标检测的区域全卷积网络(Region-based Fully Convolutional Networks,R-FCN)算法,实现同时对任意尺寸输入的糖尿病眼底图片的分类和病变区域检测。针对原始R-FCN算法对小目标(极小的出血点和血管瘤)检测困难的问题,对R-FCN算法做了一定的改进,加入特征金字塔网络(Feature Pyramid Networks,FPN)结构,升级主干网络,修改区域建议网络(Region Proposal Network,RPN)。实现结果表明,改进后的RFCN算法能以很高的正确率实现对糖尿病眼底图片的五级分类(健康、轻度、中度、重度、增殖)和病变区域检测(血管瘤、眼底出血、玻璃体出血)。  相似文献   

12.
Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people s life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of target detection, a comprehensive literature review of target detection and an overall discussion of the works closely related to it are presented in this paper. This paper various object detection methods, including one-stage and two-stage detectors, are systematically summarized, and the datasets and evaluation criteria used in object detection are introduced. In addition, the development of object detection technology is reviewed. Finally, based on the understanding of the current development of target detection, we discuss the main research directions in the future.  相似文献   

13.
In recent times, Internet of Things (IoT) and Deep Learning (DL) models have revolutionized the diagnostic procedures of Diabetic Retinopathy (DR) in its early stages that can save the patient from vision loss. At the same time, the recent advancements made in Machine Learning (ML) and DL models help in developing Computer Aided Diagnosis (CAD) models for DR recognition and grading. In this background, the current research works designs and develops an IoT-enabled Effective Neutrosophic based Segmentation with Optimal Deep Belief Network (ODBN) model i.e., NS-ODBN model for diagnosis of DR. The presented model involves Interval Neutrosophic Set (INS) technique to distinguish the diseased areas in fundus image. In addition, three feature extraction techniques such as histogram features, texture features, and wavelet features are used in this study. Besides, Optimal Deep Belief Network (ODBN) model is utilized as a classification model for DR. ODBN model involves Shuffled Shepherd Optimization (SSO) algorithm to regulate the hyperparameters of DBN technique in an optimal manner. The utilization of SSO algorithm in DBN model helps in increasing the detection performance of the model significantly. The presented technique was experimentally evaluated using benchmark DR dataset and the results were validated under different evaluation metrics. The resultant values infer that the proposed INS-ODBN technique is a promising candidate than other existing techniques.  相似文献   

14.
深度卷积神经网络的目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。  相似文献   

15.
Recently, there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy (DR). DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged people in the developed world. Initial detection of DR becomes necessary for decreasing the disease severity by making use of retinal fundus images. This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic Retinopathy (DLLSHDM-DR) on Retinal Fundus Images. The proposed DLLSHDM-DR technique intends to assist physicians with the DR decision-making method. In the DLLSHDM-DR technique, image preprocessing is initially performed to improve the quality of the fundus image. Besides, the DLLSHDM-DR applies HybridNet for producing a collection of feature vectors. For retinal image classification, the DLLSHDM-DR technique exploits the Emperor Penguin Optimizer (EPO) with a Deep Recurrent Neural Network (DRNN). The application of the EPO algorithm assists in the optimal adjustment of the hyperparameters related to the DRNN model for DR detection showing the novelty of our work. To assuring the improved performance of the DLLSHDM-DR model, a wide range of experiments was tested on the EyePACS dataset. The comparison outcomes assured the better performance of the DLLSHDM-DR approach over other DL models.  相似文献   

16.
针对糖尿病视网膜病变(DR)图像,提出了一种基于多任务学习的图像多分类分割方法.首先,通过Otsu阈值算法将大部分无病灶信息像素去除;其次,通过滑动窗口切割的方法将图像切分为若干小尺寸的图像,以解决医学图像分辨率过大以及病灶在图像中占比较小的问题;再次,将不存在病灶的子图剔除,以增大含病灶子图的比例;最后,利用UNet++多任务学习属性,并且用转置卷积代替传统上采样,进行多输出多病灶的图像分割.通过在国际公开的IDRID和DDR数据集上进行验证,在IDRi D上取得0.713 1的m AUPR,在DDR上取得0.569 1的m AUPR.  相似文献   

17.
基于深度学习的目标检测算法综述   总被引:2,自引:0,他引:2  
传统目标检测算法大多基于滑动窗口和人工特征提取,存在计算复杂度高和在复杂场景下鲁棒性差的缺点。近年来,研究人员将深度学习技术应用于目标检测领域,显著提高了算法性能。相比传统算法,基于深度学习的目标检测算法具有速度快、准确性高和在复杂条件下鲁棒性强的优点。从评价指标、公开数据集、传统算法框架等方面对目标检测任务进行阐述,按照是否存在显式的区域建议和是否定义先验锚框两种分类标准,对现有基于深度学习的目标检测算法进行分类,分别介绍算法的演进路线并总结算法机制、优势、局限性及适用场景。在此基础上,分析对比代表性算法在公开数据集中的表现,并对基于深度学习的目标检测的未来研究方向进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号