首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive ion etching (RIE) was performed on GaN and BN thin films using chlorine-based plasmas. The optimum chemistry was found to be BCl3/Cl2/N2/Ar and Cl2/Ar at 30 and 40 mtorr for GaN and BN etching, respectively. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analysis of the GaN and BN etched surfaces show a decrease in the surface nitrogen atomic composition and an increase in chlorine impurity incorporation with increasing self-dc bias. A photo-assisted RIE (PA-PIE) process using an IR filtered Xe lamp beam was then used and resulted in improved etch rates and surface composition. Optical emission spectroscopy (OES) measurements have also shown photoenhancement of the etch process.  相似文献   

2.
We compare ECR plasma etch fabrication of self-aligned thin emitter carbondoped base InGaAs/InP DHBT structures using either CH4/H2/Ar or BCl3/N2 etch chemistries. Detrimental hydrogen passivation of the carbon doping in the base region of our structure during CH4/H2/Ar dry etching of the emitter region is observed. Initial conductivity is not recovered with annealing up to a temperature of 500°C. This passivation is not due to damage from the dry etching or from the MOMBE growth process, since DHBT structures which are ECR plasma etched in BCl3/N2 have the same electrical characteristics as wet etched controls. It is due to hydrogen implantation from the plasma exposure. This is supported with secondary ion mass spectroscopy profiles of structures which are etched in CH4/D2/Ar showing an accumulation of deuterium in the C-doped base region.  相似文献   

3.
A normally-off InAlN/GaN MIS-HEMT with HfZrO2 gate insulator was realized and investigated. By using N2O plasma treatment beneath the gate region, 13 nm InAlN Schottky layer was oxidized to AlONx + 4 nm InAlN Schottky layer. The strong polarization induced carriers in traditional InAlN/GaN 2 DEG quantum well was reduced for enhancement-mode operation. High-k thin film HfZrO2 was used for gate insulator of E-mode device to further suppress gate leakage current and enhance device gate operation range. The maximum drain current of E-mode InAlN/GaN MIS-HEMT was 498 mA/mm and this value was higher than previous published InAlN/GaN E-mode devices. The measurement results of low-frequency noise also concluded that the low frequency noise is attributed to the mobility fluctuation of the channel and N2O plasma treatment did not increase fluctuation center of gate electrode.  相似文献   

4.
During gate mesa plasma etching of InN/InAlN field effect transistors the apparent conductivity in the channel can be either increased or decreased through three different mechanisms. If hydrogen is part of the plasma chemistry, hydrogen passivation of the shallow donors in the InAlN can occur, we find diffusion depths for 2H of ≥ 0.5 micron in 30 mins at 200°C. The hydrogen remains in the material until temperatures ≥ 700°C. Energetic ion bombardment in SF6/O2 or BCl3/Ar plasmas also compensates the doping in the InAlN by creation of deep acceptor states. Finally the conductivity of the immediate InAlN surface can be increased by preferential loss of N during BCl3 plasma etching, leading to poor rectifying contact characteristics when the gate metal is deposited on this etched surface. Careful control of plasma chemistry, ion energy and stoichiometry of the etched surface are necessary for acceptable pinch-off characteristics.  相似文献   

5.
Dry etching of InGaP, AlInP, and AlGaP in inductively coupled plasmas (ICP) is reported as a function of plasma chemistry (BCl3 or Cl2, with additives of Ar, N2, or H2), source power, radio frequency chuck power, and pressure. Smooth anisotropic pattern transfer at peak etch rates of 1000–2000Å·min?1 is obtained at low DC self-biases (?100V dc) and pressures (2 mTorr). The etch mechanism is characterized by a trade-off between supplying sufficient active chloride species to the surface to produce a strong chemical enhancement of the etch rate, and the efficient removal of the chlorinated etch products before a thick selvedge layer is formed. Cl2 produces smooth surfaces over a wider range of conditions than does BCl3.  相似文献   

6.
This study examined the plasma etching characteristics of ZnO thin films etched in BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas with a positive photoresist mask. The ZnO etch rates were increased in a limited way by increasing the gas flow ratio of the main etch gases in the BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas at a fixed dc self-bias voltage (Vdc). However, the ZnO etch rate was increased more effectively by increasing the Vdc. Optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS) analyses of the ZnO surfaces etched at various Cl2/(Cl2 + Ar) mixing ratios revealed the formation of the ZnOxCly reaction by-products as a result of the increased etch rate with increasing Cl2 addition, compared with 100% Ar+ sputter etching. This suggests that at Cl2/Ar flow ratios ⩾20%, the ZnO etch process is controlled by an ion-assisted removal mechanism where the etch rate is governed by the ion-bombardment energy under the saturated chlorination conditions.  相似文献   

7.
We investigated GaN films etched by using reactive ion etching (RIE) technique to fabricate the GaN-based devices. The samples were grown on sapphire substrate by metal organic chemical vapor deposition (MOCVD), and Ti/Al contacts were formed on n-GaN surfaces after etching processes. The effects of the kinds of reactive gases were evaluated by secondary ion mass spectrometry (SIMS). The results showed that in the sample etched using BCl3 gas, the signal from boron contaminations was strongly detected at the interface between the contact metal and n-GaN, and we found that additional etching in Cl2 plasma after etching with BCl3 gas was essential to make a good contact.  相似文献   

8.
Dry etch-induced damage has been investigated using Pd Schottky diodes fabricated on n-type GaN surfaces that were etched by reactive ion etching in SiCl4 and Ar plasmas. Damage was evaluated by measuring the current-voltage, current-voltage-temperature, and capacitance-voltage characteristics of the diodes. A plasma chemistry that includes a chemical etching component (SiCl4) was found to significantly reduce the degree of induced damage in comparison to a chemistry that uses only a physical component (Ar). The effective barrier height, ideality factor, reverse breakdown voltage, reverse leakage current, and the effective Richardson coefficient of diodes etched under various plasma conditions are presented. The degree of etch-induced damage was found to depend strongly on the plasma self-bias voltage but saturates with etch time after an initial two-minute etch period. Rapid thermal annealing was found to be effective in improving the diode characteristics of the etched GaN samples.  相似文献   

9.
The Mo-based metal inserted poly-Si stack (MIPS) structure is an appropriate choice for metal gate and high-k integration in sub-45 nm gate-first CMOS device. A novel metal nitride layer of TaN or AlN with high thermal stability has been introduced between Mo and poly-Si as a barrier material to avoid any reaction of Mo during poly-Si deposition. After Mo-based MIPS structure is successfully prepared, dry etching of poly-Si/TaN/Mo gate stack is studied in detail. The three-step plasma etching using the Cl2/HBr chemistry without soft landing step has been developed to attain a vertical poly-Si profile and a reliable etch-stop on the TaN/Mo metal gate. For the etching of TaN/Mo gate stack, two methods using BCl3/Cl2/O2/Ar plasma are presented to get both vertical profile and smooth etched surface, and they are critical to get high selectivity to high-k dielectric and Si substrate. In addition, adding a little SF6 to the BCl3/O2/Ar plasma under the optimized conditions is also found to be effective to smoothly etch the TaN/Mo gate stack with vertical profile.  相似文献   

10.
A parametric study of the etch characteristics of Ga-based (GaAs, GaSb, and AlGaAs) and In-based (InGaP, InP, InAs, and InGaAsP) compound semiconductors in BCl3/Ar planar inductively coupled plasmas (ICPs) was performed. The Ga-based materials etched at significantly higher rates, as expected from the higher volatilities of the As, Ga, and Al trichloride, etch products relative to InCl3. The ratio of BCl3 to Ar proved critical in determining the anisotropy of the etching for GaAs and AlGaAs, through its effect on sidewall passivation. The etched features in In-based materials tended to have sloped sidewalls and much rougher surfaces than for GaAs and AlGaAs. The etched surfaces of both AlGaAs and GaAs have comparable root-mean-square (RMS) roughness and similar stoichiometry to their unetched control samples, while the surfaces of In-based materials are degraded by the etching. The practical effect of the Ar addition is found to be the ability to operate the ICP source over a broader range of pressures and to still maintain acceptable etch rates.  相似文献   

11.
Gd2O3 is a promising gate dielectric for GaN, but little is known of its dry etching characteristics. We achieved Gd2O3 etch rates up to ~600 Å · min?1 in high density Cl2-based discharges, with maximum selectivities of ~15 over GaN and ~4 over AlN. Pure Cl2 discharges produced reverse selectivities for both Gd2O3/GaN and Gd2O3/AlN, with typical values between 0.1–0.4. When a rare gas additive such as Ar or Xe was added to the plasma chemistry, the nitrides etched faster than the oxide. This indicates that volatile etch products (GaCl3, AlCl3, N2) form in Cl2-based plasmas once the GaN or AlN bonds are broken by ion bombardment, but that GdClx species are not volatile. In conjunction with the low efficiency for Gd2O3 bond-breaking at low ion energies, this leads to low selectivity.  相似文献   

12.
H3PO4, NaOH, and KOH solutions are found to be useful for removing nitrogen depleted layers or damage induced by high temperature annealing or dry etching of metalorganic chemical vapor deposition-grown (0001)GaN/Al2O3. Solutions are selective to the (0001)plane of GaN. However, certain flat planes etched without etch pits are exposed by wet etching.  相似文献   

13.
One of the major GaN processing challenges is useful pattern transfer. Serious photoresist mask erosion and hardening are often observed in reactive ion etching of GaN. Fine pattern transfer to GaN films using photoresist masks and complete removal of remaining photoresist after etching are very difficult. By replacing the etch mask from conventional photoresist to a sputtered iron nitride (Fe-8% N) film, which is easily patterned by wet chemical etching and is very resistive to Cl based plasmas, GaN films can be finely patterned with vertical etched sidewalls. Successful pattern transfer is realized by reactive ion etching using Cl (H) containing plasmas. CHF3/Ar, C2ClF5/Ar, C2ClF5/Ar/O2, SiCl4, and CHCl3 plasmas were used to etch GaN. The GaN etch rate is dependent on the crystalline quality of GaN. Higher crystalline quality GaN films exhibit slower etch rates than GaN films with higher dislocation and stacking fault density.  相似文献   

14.
We report on the comparison of mesa sidewall profiles of InAs/GaSb strained-layer superlattice (SLS) detector structures (λ 50% cutoff ≈ 14 μm at V bias = 0 V and T = 30 K) obtained after (a) a conventional BCl3-based inductively coupled plasma etch, (b) a chemical etch (H2O2:HCl:H2O, 1:1:4), and (c) a combination of both etches. We found that the smoothest sidewall profile with reasonable undercut (~5 μm) was obtained after chemical etch only. The chemical etch was optimized primarily using an n-type GaSb substrate. During this process, numerous chemical etchants were examined. GaSb n-type substrates were chosen for this study in preference over InAs substrates due to their high chemical reactivity and the complicated composition of the native oxide. In addition, SLS detectors are usually grown on GaSb substrates and, after hybridization of the focal-plane array to the readout integrated circuit, the GaSb substrate is etched away using a combination of wet and dry etching techniques. We found that H2O2:HCl:H2O (1:1:4) etching solution provided the smoothest etched surface of GaSb, with a root-mean-square roughness of 1.59 nm.  相似文献   

15.
Etching of Al is studied in pure BCl3 as well as in mixtures with other gases in the reactive sputter etching mode in a cryopumped system. Etch rate, selectivity with respect to positive photoresist, SiO2 and Si and etch profiles are investigated as a function of gas composition, gas pressure, flow rate and plasma power. Plasma chemical processes are monitored by quadrupole mass spectroscopy as well as by optical emission spectroscopy. Perfectly square Al-profiles can be etched if etch rates are kept below 1000 A/min. Al-patterns running over steep steps can also be clearly defined if a certain amount of overetching can be tolerated. The experimental data indicate that the etch process is reactant supply limited. Anisotropic etching is achieved by either a ‘surface inhibitor mechanism’ or the formation of a sidewall protecting film.  相似文献   

16.
In this work, the role of N2 gas during the chemical dry etching of silicon oxide layers in NF3/N2/Ar remote plasmas was investigated by analyzing the species in the plasma, the reaction by-products in the exhaust, and the chemical properties of the etched surface. Increasing the N2 gas flow rate resulted in an initial increase in the oxide etch rate up to a maximum value, followed by a subsequent decrease. The increased etch rate of the silicon oxide layers was not ascribed to the increased surface arrival rate of fluorine, but to the enhanced oxygen removal from the silicon oxide caused by the formation of NO2 molecules. Presumably, the NO radicals formed from the added N2 gas react chemically with the oxygen in the oxide, leading to the breaking of the Si-O bonds and the effective removal of oxygen, which in turn enhances the formation of SiF4 resulting in an increased etch rate.  相似文献   

17.
The etching mechanism of ZrO2 thin films in BCl3/Ar plasma was investigated using a combination of experimental and modeling methods. It was found that an increase in the Ar mixing ratio causes the non-monotonic behavior of the ZrO2 etch rate which reaches a maximum of 41.4 nm/min at about 30-35% Ar. Langmuir probe measurements and plasma modeling indicated the noticeable influence of a BCl3/Ar mixture composition on plasma parameters and active species kinetics that results in non-linear changes of both densities and fluxes for Cl, BCl2 and . From the model-based analysis of surface kinetics, it was shown that the non-monotonic behavior of the ZrO2 etch rate can be associated with the concurrence of chemical and physical pathways in ion-assisted chemical reaction.  相似文献   

18.
The effect of reactive ion etch (RIE) induced damage on 4H-SiC surfaces etched in fluorinated plamas has been investigated and characterized using Ni Schottky diodes and x-ray photoelectron spectroscopic surface analysis. The diodes were characterized using current-voltage, current-voltage-temperature, and capacitance-voltage measurements with near ideal forward characteristics (n=1.07) and forward current density as high as 9000 A/cm2 from the control (unetched) devices. High current handling capability was observed in diodes with etched surfaces as well. Diodes with surfaces etched in CHF3 containing plasmas showed a significant reduction in the barrier height compared to the diodes with surfaces etched in CF4 containing plasma. Control devices exhibited high leakages when reverse biased, which is attributed to the presence of a thin (∼2 nm) oxide layer at the metal-semiconductor interface. However, under reverse bias diodes with CHF3-etched surfaces showed improvement in leakage current compared to diodes with CF4-etched surfaces and the control diodes.  相似文献   

19.
李永亮  徐秋霞 《半导体学报》2010,31(11):116001-4
提出了一种在HfSiON介质上,采用非晶硅为硬掩膜的选择性去除TaN的湿法腐蚀工艺。由于SC1(NH4OH:H2O2:H2O)对金属栅具有合适的腐蚀速率且对硬掩膜和高K材料的选择比很高,所以选择它作为TaN的腐蚀溶液。与光刻胶掩膜和TEOS硬掩膜相比,因非晶硅硬掩膜不受SC1溶液的影响且很容易用NH4OH溶液去除(NH4OH溶液对TaN和HfSiON薄膜无损伤),所以对于在HfSiON介质上实现TaN的选择性去除来说非晶硅硬掩膜是更好的选择。另外,在TaN金属栅湿法腐蚀和硬掩膜去除后, 高K介质的表面是光滑的,这可防止器件性能退化。因此,采用非晶硅为硬掩膜的TaN湿法腐蚀工艺可以应用于双金属栅集成,实现先淀积的TaN金属栅的选择性去除。  相似文献   

20.
The etching mechanism of (Bi4−xLax)Ti3O12 (BLT) thin films in Ar/Cl2 inductively coupled plasma (ICP) and plasma-induced damages at the etched surfaces were investigated as a function of gas-mixing ratios. The maximum etch rate of BLT thin films was 50.8 nm/min of 80% Ar/20% Cl2. From various experimental data, amorphous phases on the etched surface existed on both chemically and physically etched films, but the amorphous phase was thicker after the 80% Ar/20% Cl2 process. Moreover, crystalline “breaking” appeared during the etching in Cl2-containing plasma. Also the remnant polarization and fatigue resistances decreased more for the 80% Ar/20% Cl2 etch than for pure Ar plasma etch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号