共查询到19条相似文献,搜索用时 62 毫秒
1.
文中对发动机存在异响故障的特性进行了分析,并阐述了发动机异响的诊断原则、诊断部位以及典型异响故障的诊断方法。 相似文献
2.
基于神经网络的发动机异响故障诊断方法 总被引:8,自引:0,他引:8
针对汽车发动机异响故障诊断的特征,研究了基于神经网络的异响故障诊断专家系统的理论和方法及实现过程,并将此方法应用于具体JL368Q发动机异响故障诊断,结果表明其方法具有通用性和高效性。 相似文献
3.
小波变换在设备故障信号处理中得到广泛地应用,然而,小波变换只能消除白色噪声,对有色噪声不起作用.线调频小波变换统一了短时Fourier变换和小波变换的时频分析,是信号的时间-频率-尺度变换,能根据信号的特点自适应生成新的时频窗口.它不仅具有小波变换良好的时频局部性特点,而且它的时频窗口比小波变换的时频窗口更加灵活.本文应用线调频小波变换对旋转机械故障信号进行消噪,效果明显. 相似文献
5.
为解决发动机异响信号低信噪比和时域波形图对故障特征表现不直观的问题,提出了一种免疫进化网络的诊断算法。以信号频谱差异作为故障的特征信息,将异响信号通过小波包分解方法构建成抗原群体,利用免疫进化网络的训练和学习,取得了较好的识别效果,实现了发动机的异响诊断。应用结果表明,该免疫神经网络具有优越的识别性能,在识别一般抗原的基础上,还可以有效识别由于设备状态波动引起的特异抗原,为故障诊断提供了一种准确、有效的分析手段。 相似文献
6.
7.
8.
9.
李正飞 《机械工程与自动化》2008,(5)
根据小波变换和噪声信号的能量分布特性,提出了一种先用小波变换对含噪图像进行多尺度分解,求出各尺度小波变换高频系数的噪声方差和阈值,利用各尺度的阈值对高频系数进行处理,然后利用小波变换系数重构图像,实现图像降噪的方法;实验结果说明该方法既可以有效地降低噪声,又可以较好地保持图像细节。 相似文献
10.
11.
由于活塞敲缸响和活塞销响是两种常见的、却难以区分的柴油机异响故障,这里对EQ6BT柴油机这两种故障的缸体振动信号进行Morlet连续小波变换,作出小波变换系数的尺度-能量谱,并提取出尺度为3~20范围内的最大尺度能量作为BP神经网络的输入向量,实现了对该柴油机两种异响故障的诊断。结果表明,利用文中所设计的小波神经网络能非常准确地诊断出EQ6BT柴油机活塞敲缸响、活塞销响两种异响故障及其故障的严重程度。 相似文献
12.
针对滚动轴承故障诊断中存在的非平稳故障信号的特征提取困难这一难题,提出利用同步压缩小波变换(SWT)对故障信号的监测数据进行处理的方法。首先对信号进行连续小波变换(CWT),其次对小波变换系数进行同步压缩变换(SST),然后对SST系数进行自适应阈值去噪,之后在有效信号数据的频率中心附近进行积分提取,最后用提取到的有效信号进行重构。对实测的滚动轴承故障信号进行处理验证,结果表明,SWT具有较高的信号提取精度以及降噪能力,同时具有较高的时频分辨率,能够将故障信号转换为高分辨率的时频谱,弥补了CWT在这方面的不足。 相似文献
13.
14.
基于小波包变换的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对故障轴承振动信号能量集中与调制的特点,提出了一种基于小波包能量法与Hilbert变换的滚动轴承故障诊断方法。使用小波包变换对振动信号进行分解、重构及能量计算,并应用Hilbert变换对能量集中频段的重构信号进行解调和频谱分析,提取故障特征频率。同时针对诊断过程中故障特征参数依靠人工计算的问题,提出故障特征参数自动提取方法。实际的滚动轴承实验数据的处理和分析结果表明,该诊断方法能够准确、快速地识别滚动轴承表面损伤的故障模式。 相似文献
15.
16.
基于小波-神经网络的模拟电路IDDT故障诊断 总被引:9,自引:0,他引:9
动态电源电流测试(IDDT)对模拟电路故障诊断非常有效,而小波变换能够有效提取动态电流的故障特性。因此提出一种基于小波-神经网络的模拟电路IDDT故障诊断方法。利用小波变换具有时频局部化特性,分别对模拟电路正常模式和故障模式的IDDT采样信号进行特征向量提取,建立故障字典;然后利用神经网络具有非线性映射优点,对各种状态下的特征向量进行分类决策,实现模拟电路的故障诊断。 相似文献
17.
18.
基于双树复小波变换的轴承故障诊断研究 总被引:1,自引:0,他引:1
提出了一种基于双树复小波变换解调技术的轴承故障诊断新方法。该方法利用双树复小波变换具有近似平移不变性、避免频率混叠和有效降噪的优点,首先对轴承故障振动信号进行双树复小波分解和重构,将振动信号分解成实部和虚部,然后计算振动信号的双树复小波幅值包络和包络谱。齿轮箱轴承故障振动实验信号的分析表明,该方法能在强噪声环境下准确提取轴承故障产生的周期性瞬态冲击信号,能有效消除频率混叠现象和强噪声的影响,能有效识别轴承内圈和外圈故障。 相似文献
19.
基于小波包变换与样本熵的滚动轴承故障诊断 总被引:3,自引:0,他引:3
针对滚动轴承振动信号的不规则性和复杂性可以反映轴承故障的发生和发展,提出一种基于小波包变换与样本熵的轴承故障诊断方法。样本熵可以较少地依赖时间序列的长度,将轴承振动信号进行3层小波包分解,利用分解得到的各个频带的样本熵值作为特征向量,利用支持向量机对轴承故障进行分类。对轴承内圈故障、滚动体故障和外圈故障3种故障及不同损伤程度的实测数据进行实验,结果表明该方法取得较高的识别率,具有一定的工程应用价值。 相似文献