首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For hyper-rectangles in $\mathbb{R}^{d}$ Auer (1997) proved a PAC bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ , where $\varepsilon$ and $\delta$ are the accuracy and confidence parameters. It is still an open question whether one can obtain the same bound for intersection-closed concept classes of VC-dimension $d$ in general. We present a step towards a solution of this problem showing on one hand a new PAC bound of $O(\frac{1}{\varepsilon}(d\log d + \log \frac{1}{\delta}))$ for arbitrary intersection-closed concept classes, complementing the well-known bounds $O(\frac{1}{\varepsilon}(\log \frac{1}{\delta}+d\log \frac{1}{\varepsilon}))$ and $O(\frac{d}{\varepsilon}\log \frac{1}{\delta})$ of Blumer et al. and (1989) and Haussler, Littlestone and Warmuth (1994). Our bound is established using the closure algorithm, that generates as its hypothesis the intersection of all concepts that are consistent with the positive training examples. On the other hand, we show that many intersection-closed concept classes including e.g. maximum intersection-closed classes satisfy an additional combinatorial property that allows a proof of the optimal bound of $O(\frac{1}{\varepsilon}(d+\log \frac{1}{\delta}))$ . For such improved bounds the choice of the learning algorithm is crucial, as there are consistent learning algorithms that need $\Omega(\frac{1}{\varepsilon}(d\log\frac{1}{\varepsilon} +\log\frac{1}{\delta}))$ examples to learn some particular maximum intersection-closed concept classes.  相似文献   

2.
In this paper we study gossip based information spreading with bounded message sizes. We use algebraic gossip to disseminate $k$ distinct messages to all $n$ nodes in a network. For arbitrary networks we provide a new upper bound for uniform algebraic gossip of $O((k+\log n + D)\varDelta )$ rounds with high probability, where $D$ and $\varDelta $ are the diameter and the maximum degree in the network, respectively. For many topologies and selections of $k$ this bound improves previous results, in particular, for graphs with a constant maximum degree it implies that uniform gossip is order optimal and the stopping time is $\varTheta (k + D)$ . To eliminate the factor of $\varDelta $ from the upper bound we propose a non-uniform gossip protocol, TAG, which is based on algebraic gossip and an arbitrary spanning tree protocol $\mathcal{S } $ . The stopping time of TAG is $O(k+\log n +d(\mathcal{S })+t(\mathcal{S }))$ , where $t(\mathcal{S })$ is the stopping time of the spanning tree protocol, and $d(\mathcal{S })$ is the diameter of the spanning tree. We provide two general cases in which this bound leads to an order optimal protocol. The first is for $k=\varOmega (n)$ , where, using a simple gossip broadcast protocol that creates a spanning tree in at most linear time, we show that TAG finishes after $\varTheta (n)$ rounds for any graph. The second uses a sophisticated, recent gossip protocol to build a fast spanning tree on graphs with large weak conductance. In turn, this leads to the optimally of TAG on these graphs for $k=\varOmega (\text{ polylog }(n))$ . The technique used in our proofs relies on queuing theory, which is an interesting approach that can be useful in future gossip analysis.  相似文献   

3.
A number of algorithms for computing the simulation preorder (and equivalence) on Kripke structures are available. Let $\varSigma $ denote the state space, ${\rightarrow }$ the transition relation and $P_{\mathrm {sim}}$ the partition of $\varSigma $ induced by simulation equivalence. While some algorithms are designed to reach the best space bounds, whose dominating additive term is $|P_{\mathrm {sim}}|^2$ , other algorithms are devised to attain the best time complexity $O(|P_{\mathrm {sim}}||{\rightarrow }|)$ . We present a novel simulation algorithm which is both space and time efficient: it runs in $O(|P_ {\mathrm {sim}}|^2 \log |P_{\mathrm {sim}}| + |\varSigma |\log |\varSigma |)$ space and $O(|P_{\mathrm {sim}}||{\rightarrow }|\log |\varSigma |)$ time. Our simulation algorithm thus reaches the best space bounds while closely approaching the best time complexity.  相似文献   

4.
We study broadcasting, also known as one-to-all communication, in synchronous radio networks with known topology modeled by undirected (symmetric) graphs, where the interference range of a node is likely exceeding its transmission range. In this model, if two nodes are connected by a transmission edge they can communicate directly. On the other hand, if two nodes are connected by an interference edge they cannot communicate directly and transmission of one node disables recipience of any message at the other node. For a network $G,$ we term the smallest integer $d$ , s.t., for any interference edge $e$ there exists a simple path formed of at most $d$ transmission edges connecting the endpoints of $e$ as its interference distance $d_I$ . In this model the schedule of transmissions is precomputed in advance. It is based on the full knowledge of the size and the topology (including location of transmission and interference edges) of the network. We are interested in the design of fast broadcasting schedules that are energy efficient, i.e., based on a bounded number of transmissions executed at each node. We adopt $n$ as the number of nodes, $D_T$ is the diameter of the subnetwork induced by the transmission edges, and $\varDelta $ refers to the maximum combined degree (formed of transmission and interference edges) of the network. We contribute the following new results: (1) We prove that for networks with the interference distance $d_I\ge 2$ any broadcasting schedule requires at least $D_T+\varOmega (\varDelta \cdot \frac{\log {n}}{\log {\varDelta }})$ rounds. (2) We provide for networks modeled by bipartite graphs an algorithm that computes $1$ -shot (each node transmits at most once) broadcasting schedules of length $O(\varDelta \cdot \log {n})$ . (3) The main result of the paper is an algorithm that computes a $1$ -shot broadcasting schedule of length at most $4 \cdot D_T + O(\varDelta \cdot d_I \cdot \log ^4{n})$ for networks with arbitrary topology. Note that in view of the lower bound from (1) if $d_I$ is poly-logarithmic in $n$ this broadcast schedule is a poly-logarithmic factor away from the optimal solution.  相似文献   

5.
In this paper we study the problem of building a constant-degree connected dominating set (CCDS), a network structure that can be used as a communication backbone, in the dual graph radio network model (Clementi et al. in J Parallel Distrib Comput 64:89–96, 2004; Kuhn et al. in Proceedings of the international symposium on principles of distributed computing 2009, Distrib Comput 24(3–4):187–206 2011, Proceedings of the international symposium on principles of distributed computing 2010). This model includes two types of links: reliable, which always deliver messages, and unreliable, which sometimes fail to deliver messages. Real networks compensate for this differing quality by deploying low-layer detection protocols to filter unreliable from reliable links. With this in mind, we begin by presenting an algorithm that solves the CCDS problem in the dual graph model under the assumption that every process $u$ is provided with a local link detector set consisting of every neighbor connected to $u$ by a reliable link. The algorithm solves the CCDS problem in $O\left( \frac{\varDelta \log ^2{n}}{b} + \log ^3{n}\right) $ rounds, with high probability, where $\varDelta $ is the maximum degree in the reliable link graph, $n$ is the network size, and $b$ is an upper bound in bits on the message size. The algorithm works by first building a Maximal Independent Set (MIS) in $\log ^3{n}$ time, and then leveraging the local topology knowledge to efficiently connect nearby MIS processes. A natural follow-up question is whether the link detector must be perfectly reliable to solve the CCDS problem. With this in mind, we first describe an algorithm that builds a CCDS in $O(\varDelta $ polylog $(n))$ time under the assumption of $O(1)$ unreliable links included in each link detector set. We then prove this algorithm to be (almost) tight by showing that the possible inclusion of only a single unreliable link in each process’s local link detector set is sufficient to require $\varOmega (\varDelta )$ rounds to solve the CCDS problem, regardless of message size. We conclude by discussing how to apply our algorithm in the setting where the topology of reliable and unreliable links can change over time.  相似文献   

6.
In this paper, we develop and analyze a fast solver for the system of algebraic equations arising from the local discontinuous Galerkin (LDG) discretization and implicit time marching methods to the Cahn–Hilliard (CH) equations with constant and degenerate mobility. Explicit time marching methods for the CH equation will require severe time step restriction $(\varDelta t \sim O(\varDelta x^4))$ , so implicit methods are used to remove time step restriction. Implicit methods will result in large system of algebraic equations and a fast solver is essential. The multigrid (MG) method is used to solve the algebraic equations efficiently. The Local Mode Analysis method is used to analyze the convergence behavior of the linear MG method. The discrete energy stability for the CH equations with a special homogeneous free energy density $\Psi (u)=\frac{1}{4}(1-u^2)^2$ is proved based on the convex splitting method. We show that the number of iterations is independent of the problem size. Numerical results for one-dimensional, two-dimensional and three-dimensional cases are given to illustrate the efficiency of the methods. We numerically show the optimal complexity of the MG solver for $\mathcal{P }^1$ element. For $\mathcal{P }^2$ approximation, the optimal or sub-optimal complexity of the MG solver are numerically shown.  相似文献   

7.
We study inherent structural properties of a strongly NP-hard problem of scheduling $n$ jobs with release times and due dates on a single machine to minimize the number of late jobs. Our study leads to two polynomial-time algorithms. The first algorithm with the time complexity $O(n^3\log n)$ solves the problem if during its execution no job with some special property occurs. The second algorithm solves the version of the problem when all jobs have the same length. The time complexity of the latter algorithm is $O(n^2\log n)$ , which is an improvement over the earlier known algorithm with the time complexity $O(n^5)$ .  相似文献   

8.
In this paper, we introduce the concept of $\lambda $ -statistical convergence of order $\theta $ and strong $\lambda $ -summability of order $\theta $ for the sequence of fuzzy numbers. Further the same concept is extended to the sequence of fuzzy functions and introduce the spaces like $S_\lambda ^\theta (\hat{f})$ and $\omega _{\lambda p} ^\theta (\hat{f})$ . Some inclusion relations in those spaces and also the underlying relation between these two spaces are also obtained.  相似文献   

9.
In this paper we extend the study of algorithms for monitoring distributed data streams from whole data streams to a time-based sliding window. The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is $O(\frac{k}{\varepsilon} \log\frac{\varepsilon N}{k})$ bits for basic counting, $O(\frac{k}{\varepsilon} \log\frac{N}{k})$ words for frequent items and $O(\frac{k}{\varepsilon^{2}} \log\frac{N}{k})$ words for quantiles, where k is the number of distributed data streams, N is the total number of items in the streams that arrive or expire in the window, and ε<1 is the given error bound. The performance of our algorithms matches and nearly matches the corresponding lower bounds. We also show how to generalize these results to streams with out-of-order data.  相似文献   

10.
This paper proposes a quantum multiply-accumulator circuit (QMAC), which can perform the calculation on conventional integers faster than its classical counterpart. Whereas classically applying a multiply–adder (MAC) $n$ times to $k$ bit integers would require $O(n \log k)$ parallel steps, the hybrid QMAC needs only $O(n + k)$ steps for the exact result and $O(n + \log k)$ steps for an approximate result. The proposed circuit could potentially be embedded in a conventional computer architecture as a quantum device or accelerator, enabling a wide range of applications to execute faster.  相似文献   

11.
Using S.L. Sobolev’s method, we construct the interpolation splines minimizing the semi-norm in $K_2(P_2)$ , where $K_2(P_2)$ is the space of functions $\phi $ such that $\phi ^{\prime } $ is absolutely continuous, $\phi ^{\prime \prime } $ belongs to $L_2(0,1)$ and $\int _0^1(\varphi ^{\prime \prime }(x)+\varphi (x))^2dx<\infty $ . Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline is exact for the trigonometric functions $\sin x$ and $\cos x$ . Finally, in a few numerical examples the qualities of the defined splines and $D^2$ -splines are compared. Furthermore, the relationship of the defined splines with an optimal quadrature formula is shown.  相似文献   

12.
Point location is an extremely well-studied problem both in internal memory models and recently also in the external memory model. In this paper, we present an I/O-efficient dynamic data structure for point location in general planar subdivisions. Our structure uses linear space to store a subdivision with N segments. Insertions and deletions of segments can be performed in amortized O(log? B N) I/Os and queries can be answered in $O(\log_{B}^{2} N)$ I/Os in the worst-case. The previous best known linear space dynamic structure also answers queries in $O(\log_{B}^{2} N)$ I/Os, but only supports insertions in amortized $O(\log_{B}^{2} N)$ I/Os. Our structure is also considerably simpler than previous structures.  相似文献   

13.
We develop a stability and convergence theory for a Discontinuous Galerkin formulation (DG) of a highly indefinite Helmholtz problem in $\mathbb R ^{d}$ , $d\in \{1,2,3\}$ . The theory covers conforming as well as non-conforming generalized finite element methods. In contrast to conventional Galerkin methods where a minimal resolution condition is necessary to guarantee the unique solvability, it is proved that the DG-method admits a unique solution under much weaker conditions. As an application we present the error analysis for the $hp$ -version of the finite element method explicitly in terms of the mesh width $h$ , polynomial degree $p$ and wavenumber $k$ . It is shown that the optimal convergence order estimate is obtained under the conditions that $kh/\sqrt{p}$ is sufficiently small and the polynomial degree $p$ is at least $O(\log k)$ . On regular meshes, the first condition is improved to the requirement that $kh/p$ be sufficiently small.  相似文献   

14.
The inverse and reverse counterparts of the single-machine scheduling problem $1||L_{\max }$ are studied in [2], in which the complexity classification is provided for various combinations of adjustable parameters (due dates and processing times) and for five different types of norm: $\ell _{1},\ell _{2},\ell _{\infty },\ell _{H}^{\Sigma } $ , and $\ell _{H}^{\max }$ . It appears that the $O(n^{2})$ -time algorithm for the reverse problem with adjustable due dates contains a flaw. In this note, we present the structural properties of the reverse model, establishing a link with the forward scheduling problem with due dates and deadlines. For the four norms $\ell _{1},\ell _{\infty },\ell _{H}^{\Sigma }$ , and $ \ell _{H}^{\max }$ , the complexity results are derived based on the properties of the corresponding forward problems, while the case of the norm $\ell _{2}$ is treated separately. As a by-product, we resolve an open question on the complexity of problem $1||\sum \alpha _{j}T_{j}^{2}$ .  相似文献   

15.
Gábor Wiener 《Algorithmica》2013,67(3):315-323
A set system $\mathcal{H} \subseteq2^{[m]}$ is said to be separating if for every pair of distinct elements x,y∈[m] there exists a set $H\in\mathcal{H}$ such that H contains exactly one of them. The search complexity of a separating system $\mathcal{H} \subseteq 2^{[m]}$ is the minimum number of questions of type “xH?” (where $H \in\mathcal{H}$ ) needed in the worst case to determine a hidden element x∈[m]. If we receive the answer before asking a new question then we speak of the adaptive complexity, denoted by $\mathrm{c} (\mathcal{H})$ ; if the questions are all fixed beforehand then we speak of the non-adaptive complexity, denoted by $\mathrm{c}_{na} (\mathcal{H})$ . If we are allowed to ask the questions in at most k rounds then we speak of the k-round complexity of $\mathcal{H}$ , denoted by $\mathrm{c}_{k} (\mathcal{H})$ . It is clear that $|\mathcal{H}| \geq\mathrm{c}_{na} (\mathcal{H}) = \mathrm{c}_{1} (\mathcal{H}) \geq\mathrm{c}_{2} (\mathcal{H}) \geq\cdots\geq\mathrm{c}_{m} (\mathcal{H}) = \mathrm{c} (\mathcal{H})$ . A group of problems raised by G.O.H. Katona is to characterize those separating systems for which some of these inequalities are tight. In this paper we are discussing set systems $\mathcal{H}$ with the property $|\mathcal{H}| = \mathrm{c}_{k} (\mathcal{H}) $ for any k≥3. We give a necessary condition for this property by proving a theorem about traces of hypergraphs which also has its own interest.  相似文献   

16.
In this paper we study decentralized routing in small-world networks that combine a wide variation in node degrees with a notion of spatial embedding. Specifically, we consider a variant of J. Kleinberg’s grid-based small-world model in which (1) the number of long-range edges of each node is not fixed, but is drawn from a power-law probability distribution with exponent parameter \(\alpha \ge 0\) and constant mean, and (2) the long-range edges are considered to be bidirectional for the purposes of routing. This model is motivated by empirical observations indicating that several real networks have degrees that follow a power-law distribution. The measured power-law exponent \(\alpha \) for these networks is often in the range between 2 and 3. For the small-world model we consider, we show that when \(2 < \alpha < 3\) the standard greedy routing algorithm, in which a node forwards the message to its neighbor that is closest to the target in the grid, finishes in an expected number of \(O(\log ^{\alpha -1} n\cdot \log \log n)\) steps, for any source–target pair. This is asymptotically smaller than the \(O(\log ^2 n)\) steps needed in Kleinberg’s original model with the same average degree, and approaches \(O(\log n)\) as \(\alpha \) approaches 2. Further, we show that when \(0\le \alpha < 2\) or \(\alpha \ge 3\) the expected number of steps is \(O(\log ^2 n)\) , while for \(\alpha = 2\) it is \(O(\log ^{4/3} n)\) . We complement these results with lower bounds that match the upper bounds within at most a \(\log \log n\) factor.  相似文献   

17.
Rare-category detection helps discover new rare classes in an unlabeled data set by selecting their candidate data examples for labeling. Most of the existing approaches for rare-category detection require prior information about the data set without which they are otherwise not applicable. The prior-free algorithms try to address this problem without prior information about the data set; though, the compensation is high time complexity, which is not lower than $O(dN^2)$ where $N$ is the number of data examples in a data set and $d$ is the data set dimension. In this paper, we propose CLOVER a prior-free algorithm by introducing a novel rare-category criterion known as local variation degree (LVD), which utilizes the characteristics of rare classes for identifying rare-class data examples from other types of data examples and passes those data examples with maximum LVD values to CLOVER for labeling. A remarkable improvement is that CLOVER’s time complexity is $O(dN^{2-1/d})$ for $d > 1$ or $O(N\log N)$ for $d = 1$ . Extensive experimental results on real data sets demonstrate the effectiveness and efficiency of our method in terms of new rare classes discovery and lower time complexity.  相似文献   

18.
Recently, Shabtay and Bensoussan (2012) developed an original exact pseudo-polynomial algorithm and an efficient $\upvarepsilon $ -approximation algorithm (FPTAS) for maximizing the weighted number of just-in-time jobs in a two-machine flow shop problem. The complexity of the FPTAS is $O$ (( $n^{4}/\upvarepsilon $ )log( $n$ / $\upvarepsilon $ )), where $n$ is the number of jobs. In this note we suggest another pseudo-polynomial algorithm that can be converted to a new FPTAS which improves Shabtay–Bensoussan’s complexity result and runs in $O(n^{3}/\upvarepsilon )$ time.  相似文献   

19.
In this paper we propose mathematical optimizations to select the optimal regularization parameter for ridge regression using cross-validation. The resulting algorithm is suited for large datasets and the computational cost does not depend on the size of the training set. We extend this algorithm to forward or backward feature selection in which the optimal regularization parameter is selected for each possible feature set. These feature selection algorithms yield solutions with a sparse weight matrix using a quadratic cost on the norm of the weights. A naive approach to optimizing the ridge regression parameter has a computational complexity of the order $O(R K N^{2} M)$ with $R$ the number of applied regularization parameters, $K$ the number of folds in the validation set, $N$ the number of input features and $M$ the number of data samples in the training set. Our implementation has a computational complexity of the order $O(KN^3)$ . This computational cost is smaller than that of regression without regularization $O(N^2M)$ for large datasets and is independent of the number of applied regularization parameters and the size of the training set. Combined with a feature selection algorithm the algorithm is of complexity $O(RKNN_s^3)$ and $O(RKN^3N_r)$ for forward and backward feature selection respectively, with $N_s$ the number of selected features and $N_r$ the number of removed features. This is an order $M$ faster than $O(RKNN_s^3M)$ and $O(RKN^3N_rM)$ for the naive implementation, with $N \ll M$ for large datasets. To show the performance and reduction in computational cost, we apply this technique to train recurrent neural networks using the reservoir computing approach, windowed ridge regression, least-squares support vector machines (LS-SVMs) in primal space using the fixed-size LS-SVM approximation and extreme learning machines.  相似文献   

20.
We consider transactional memory contention management in the context of balanced workloads, where if a transaction is writing, the number of write operations it performs is a constant fraction of its total reads and writes. We explore the theoretical performance boundaries of contention management in balanced workloads from the worst-case perspective by presenting and analyzing two new polynomial time contention management algorithms. We analyze the performance of a contention management algorithm by comparison with an optimal offline contention management algorithm to provide a competitive ratio. The first algorithm Clairvoyant is $O(\sqrt{s})$ -competitive, where s is the number of shared resources. This algorithm depends on explicitly knowing the conflict graph at each time step of execution. The second algorithm Non-Clairvoyant is $O(\sqrt{s} \cdot \log n)$ -competitive, with high probability, which is only a O(log?n) factor worse, but does not require knowledge of the conflict graph, where n is the number of transactions. Both of these algorithms are greedy. We also prove that the performance of Clairvoyant is close to optimal, since there is no polynomial time contention management algorithm for the balanced transaction scheduling problem that is better than $O((\sqrt{s})^{1-\varepsilon})$ -competitive for any constant ε>0, unless NP?ZPP. To our knowledge, these results are significant improvements over the best previously known O(s) competitive ratio bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号