首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
A CAD/CAM tool for prototyping and small-scale production of micro-electro-mechanical systems (MEMS) devices based on the excimer laser ablation process has been developed. The system’s algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD model, and parameters that influence the process (laser fluence, pulse repetition frequency, number of shots per area, wall angle, stitching errors) to automatically generate a precise NC part program for the excimer laser machine. The performance of the system has been verified by NC part program generation for several 3D microstructures and subsequent machining trials. An initial stitching error of 23.4±2.2-μm wide and 3.4±1.5-μm high was observed when the overlap size between adjacent volumes was zero, when ablating 100×100-μm features in polycarbonate (PC) at a fluence of 0.5 J/cm2 using a workpiece-dragging technique. When the size of the overlap was optimised by a system based on optimal process parameters determined by the Taguchi design of experiment method (DOE), and incorporated in the mask design, the maximum stitching error was reduced to 13.4±2.2-μm wide and 1.4±0.9-μm high under the same conditions. By employing a hexagonal-shaped mask with incorporated size of the image overlap, reduced horizontal-stitching errors of 2.4±0.2-μm wide and 1.4±0.2-μm high were observed. The system simplifies part program creation and is useful for excimer laser operators who currently use a tedious trial and error process to create programs and complex masks to generate microstructure parts.  相似文献   

2.
The aim of this paper is to explore the limits and special requirements for additive manufacturing using polymer extrusion with a nozzle diameter much smaller than the conventional one: 0.050 mm diameter. This work is focused on the nozzle design and analyzes the effect of such a reduced diameter on the extrusion process and on the cooling of material while being deposited on the part. The approach is based on experimental and theoretical studies starting from conventional fused deposition modeling technology where the study tested swelling and cooling of filament material during deposition. Experimental work was used to assess the validity of the theoretical model and the first normal stress equation which estimated a swelling factor (diameter) of 1.249 at 0.087 g/h mass rate. The convection coefficient (h) on the plastic part was estimated as7?W/m2?K on the first deposited layer; considerably lower than some references show.  相似文献   

3.
Maturation of powder-bed additive manufacturing (AM) is essential for the business benefit the rapid adoption of AM offers to industry. One of the principal challenges in powder-bed AM is the mitigation of distortion due to material shrinkage and residual stresses induced during the build process. In order to address this, a new methodology for distortion compensation is developed and presented in this paper. The novelty of the methodology lies in the use of a mathematical model for pre-distorting the design geometry based on 3D optical scanning measurement data. The methodology has been applied to two industrial Inconel 718 components (a turbine blade and an impeller). It was experimentally demonstrated that distortion compensation is achievable using the proposed methodology. The results showed the compensation methodology reduced distortion from approximately ±300 μm to approximately ±65 μm for both components. In summary, the novel methodology can be used to deliver near-zero distorted parts for industry using powder-bed AM processes.  相似文献   

4.
Stereolithography apparatus (SLA) is one of the most famous and versatile additive manufacturing techniques and has been widely used in many industrial fields. However, the surface quality of SLA parts is unsatisfactory for the precise parts due to stair stepping caused by the layered manufacturing process. In this study, the stair stepping of SLA parts was relieved by ultrahigh pressure atomizing coating with the polyethylene wax emulsion using a group of optimum coating parameters. The experimental results showed that polyethylene wax film with the thickness less than 0.1 mm bonded to the SLA parts adequately and the surface roughness of the SLA parts can be significantly reduced; the Ra of SLA parts was decreased to less than 2.5 μm. This method can be applied to improve both the outer surface and the inner surface of complex SLA parts with good dimensional accuracy and no damage to SLA parts, implying potential for fabrication of precise components. Expected advantages of this method include economical, operator-friendly, and time-saving for the manufacturers.  相似文献   

5.
We have previously described the development of a microstereolithography (µSL) system using a Digital Micromirror Device (DMD) for dynamic pattern generation and an ultraviolet (UV) lamp filtered at 365 nm for crosslinking a photoreactive polymer solution. The µSL system was designed with xy resolution of approximately 2 µm and a vertical (z) resolution of approximately 1 µm (with practical build limitations on vertical resolution of approximately 30 µm due to limitations on controlling UV penetration in z). The developed µSL system is capable of producing real three-dimensional (3D) microstructures, which can be employed in applications such as microfluidics, tissue engineering, and various functional microsystems. Many benefits will potentially be derived from producing multiple material microstructures in µSL, and one particular application area of interest is in producing multi-material microscaffolds for tissue engineering. In the present work, a method for multi-material µSL fabrication was developed using a syringe pump system to add a material to a small, removable vat designed specifically for the multi-material µSL system. Multi-material fabrication was accomplished using a material changeover process that included manually removing the vat, draining the current material, rinsing the vat, returning the vat to the system, and finally dispensing a prescribed volume in the vat using the syringe pump. Layer thicknesses of approximately 30 µm were achieved using this process. To demonstrate this system, several multi-material microstructures were produced to highlight the capability of this promising technology for fabricating 3D functional, multi-material microstructures with spatial control over placement of both material and structure.  相似文献   

6.
In servo-scanning 3D micro electro discharge machining (SS-3D MEDM), the depth errors of 3D micro cavities are accumulated layer by layer due to the contour scanning process with keeping discharge gap for compensating axial electrode wear in real time. In this research, the errors’ causes were analyzed, and then a layer depth constrained algorithm (LDCA) and an S-curve accelerating algorithm (SCAA) were proposed to reduce the depth errors. By LDCA, over-cutting errors can be avoided by controlling a tool-electrode feed maximum at every scanning spot. As a supplementary algorithm for LDCA, SCAA can compensate insufficient-machining errors at start and end of scanning paths. Implementation process and control strategy of the algorithms were also described. The purpose of this research is to efficiently machine complex 3D micro-cavities with high accuracies of shape and surface. By use of computer-aided manufacturing software of Pro/Engineer to plan complex 3D scanning paths, machining experiments were carried out to verify the proposed algorithms. The experimental results show: Typical 3D micro cavities <800 μm can be automatically machined, and the machining accuracies of micro surfaces and edges are obviously improved, and the depth errors can be controlled within 2 μm, and the material removal rate reaches 2.0 × 10μm3/s with tool electrode of 80 μm and its rotational speed of 1000 r/min. In addition, the 3D micro cavities designed on unknown edge or hollow workpieces can be successfully formed.  相似文献   

7.
In this paper, a systematic approach on how to predict kinematic errors based on tolerance of machine tools’ guideways is introduced. Firstly, the truncated Fourier series function is applied to fit curve of guideways surface. Since geometric profile errors are regarded as a bridge between tolerance and kinematic errors of machine tools’ guideways, the mapping relationship between tolerance and geometric profile errors of machine tools’ guideways is formulated, and the mapping relationship between geometric profile errors and kinematic errors of guideways is established. Then, kinematic errors prediction model based on tolerance of guideways is subsequently proposed. Finally, simulation verification is conducted with this method. Simulation results show the range of the predicted kinematic errors (positioning error, y direction and z direction straightness error, roll error, pitch error, and yaw error) is 17.12 μm, 56.57 μm, 70.71 μm, 28.28 μrad, 141.42 μrad, and 113.14 μrad, respectively. In order to verify the feasibility and effectiveness of the presented method, a measuring experiment is carried out on guideways of a gantry-type five-axis milling machine tools by using a dual-frequency laser interferometer. The measured and identified discrete data can be fitted precisely by Fourier curve fitting method. The fitting results show the range of the measured kinematic errors is 16.96 μm, 59.43 μm, 68.63 μm, 28.65 μrad, 135.40 μrad, and 111.58 μrad, respectively. The maximum residual errors between the predicted and measured values of kinematic errors are 1.67 μm, 5.19 μm, 5.50 μm, 1.87 μrad, 9.81 μrad, and 7.07μrad, respectively. Comparing with the measured results of kinematic errors, residual errors are considerably small and can be neglected. Therefore, there is no doubt that this method is effective enough for predicting kinematic errors and can be used to replace the measurement of kinematic errors. In the design stage of machine tools, this approach is convenient for engineers to derive the distribution of kinematic errors. And its basic idea can be applied to other type of machine tools’ guideways.  相似文献   

8.
The cast extrusion manufacturing process is the initial step which enables the creation of the raw materials, such as clear polypropylene film, needed for the flexible packaging printing process. The current methodology of controlling extrusion-related defect occurrences is attempted by a combination of statistical sampling and human inspection. However, due to the fact that the defects are small in size and hard to visualise in a clear thin film 2 m in width moving at a speed of 50 m/min. This results in poor product quality and high return ratio from customers. To the best of our knowledge, there is no system available that can accurately detect such defects. This research investigates possible defect detection methodologies and has subsequently proposed a system that is capable of real-time monitoring of defects on the cast extrusion manufacturing process. The proposed system utilises the refraction of a collimated light source, which is referred to as Mie light scattering. A vision analysis system is subsequently used to perform a blob analysis to detect the contrasting dark regions of the defects. Two test rigs were constructed to test the feasibility of the system. The first test rig was created to test the theoretical Mie scattering principles and the performance of the image analysis software in practice. The second test rig was created to test the practicability of integrating the Mie scattering theory on the physical cast extrusion line. The results obtained from the tests indicated a success rate of 90% in identifying gels and a 100% success rate in correctly identifying all the die lines presented in the tested samples. It is also deduced that the software has a capability to detect gel granules with a diameter greater than 480 μm and die lines with a thickness greater than 320 μm amid complete repeatability, ensuring that the proposed system fully conforms to the standard industrial requirements.  相似文献   

9.
Elastic deformation machining is a fabrication method that exploits the elastic deformation properties of materials under stress. Coupled with plane lapping machining process, this new fabrication method is suitable for machining complex aspheric surfaces. Upon completion of the machining process, the workpiece under process will be shaped into a desired surface form. The elastic deformation machining has several advantages over traditional fabrication methods, i.e., high machining compatibility and high fidelity of material property during machining process. The subject of this study is to determine the surface shape of the finished glass workpiece after the lapping process of the elastic deformation machining. The experimental results were compared with theoretical calculations. In the case when the vacuum pressure is 50 kPa, the maximum deviation value between the deformation curves from the theoretical calculation and the experiment results is within 62 μm. In order to improve the precision of form surface, the vacuum pressure is modified from 50 to 42 kPa. This reduction corresponds to a change of workpiece thickness when it is lapped. The results of the change of vacuum pressure show that the form accuracy produced is improved significantly and agrees very well with theoretical calculations. The maximum deviation in this case is 1.6 μm. The study indicates that the experimental plane lapping setup that exploits the material elasticity property can be utilized to fabricate aspheric lenses with axisymmetric surface and low complexity.  相似文献   

10.
This paper proposes a novel fabrication process based on femtosecond laser cutting and micro-electric resistance slip welding to address the bottleneck presented by ultraviolet–Lithographie, Galvanoformung, Abformung combined with micro-electroforming, in which micro-molds are usually fabricated with vertical wall structures. At first, 10-μm thick 0Cr18Ni9 stainless steel foils were cut by femtosecond laser to obtain several single-layer graphics which were then joined by micro-electric resistance slip welding. The slip welding process formed a 3D micro-structure and the weld zone of micro-structure was tested by the X-ray diffraction (XRD). The XRD results show that the phases of weld zone remain unchanged, but that the phase content slightly changes. Finally, a 3D metal micro-structure mold was processed under 110 mW femtosecond laser power, 0.1 mm/s cutting speed, 0.21 V welding voltage, 10 ms welding time, 0.2 MPa welding pressure, 0.5 mm bar electrode diameter, 160 time’s slip welding discharge, which proves that the forming process could be a useful method for the production of 3D micro-molds.  相似文献   

11.
为弥补普通光学显微镜照明系统的不足,针对一般三维微结构的显微成像,提出并设计了一个可实现实时调节的三向光纤照明成像观测系统.系统采用计算机、D/A卡、驱动电路等硬件以及自主研制的控制软件,实现对任一光源的光强进行稳定连续的实时调节.通过自主设计的机械结构将光源、光纤、耦合头以及显微镜连接为一整体,实现光束入射方向、入射角和入射距离的任意调节.与通常的底部透射光照明系统进行实验比较,成像质量显著提高,不仅可以清晰观察目标对像的表面结构,还能得到立体感强的三维图像.针对面阵CCD显微测量系统的标定和标定误差问题,提出了螺旋微缝标定法.将螺旋测微计两铁钻形成的微缝作为标定的样本,配以适当的观测手段和计算方法,有效地消除或减小了各种误差,提高了系统的标定精度.通过系统标定和测量比较,系统的标定精度达到±0.0015μm,测量精度达到±1μm.实验结果表明,螺旋微缝标定法可以基本满足CCD测量系统标定的要求.  相似文献   

12.
The objective of this research is to investigate the effect of slice thickness on the profile accuracy of the model maker (MM) rapid prototyping (RP) system, layer by layer, through non-contact laser probe measurement. A circular triangulation laser probe, model OTM-3A20, made by Wolf & Beck Co., was mounted on a coordinate measuring machine (CMM), as the non-contact sensor. An adjustment device for the laser probe was designed to minimise the cosine error caused by assembly inaccuracy. The alignment test of the measuring laser beam was carried out using a calibrated specimen. The systematic accuracy of the circular triangulation laser probe with respect to the surface roughness and the surface slope of the RP workpiece was investigated using a HP5529A laser interferometer system. The maximum error of 21/2D RP part profile accuracy can be improved from 220 μm to 131 μm, and the average error can be improved from 78 μm to 46 μm as the slice thickness changed from 0.127 mm (0.005 in.) to 0.0127 μm (0.0005 in). However, the machining time increases by about seven fold based on the experimental results. An overall error of 197 μm as measured by the laser probe is attainable using the finest slice thickness 0.0127 mm (0.0005 in.) for the 3D profile accuracy. To verify the accuracy of non-contact laser probe measurement, the 3D profile of the RP part was also measured by a CNC CMM, with good consistency.  相似文献   

13.
This paper reports about investigations on some important aspects of surface integrity of the miniature spur gears manufactured by wire electrical discharge machining (WEDM) process. The investigations included study of variation of form errors (deviations in profile and lead) and surface roughness with discharge energy parameters, i.e., voltage and/or pulse-on time for the miniature gears. The effect of WEDM process on flank surface topography, bearing length parameters, microstructure, and microhardness for the best quality miniature gear were also studied. The manufactured miniature gears were of external spur type having 9.8 mm as outside diameter, 4.9-mm thickness, 0.7 mm as module, 12 teeth, and were made of brass. It was found that combination of low discharge energy parameters resulted in better form accuracy, surface finish, and microstructure ensuring enhanced service life and better functional characteristics of the WEDMed miniature gears. The best quality miniature gear had form errors (i.e., lead and profile deviations) as low as 5.4 μm, very little variation in the actual surface topography from the theoretical one, an average surface roughness of 1 μm, and maximum surface roughness within the entire evaluation length as 6.4 μm, showed consistent surface finish measured by other surface roughness parameters, good bearing area curve, and crack-free gear tooth surface without significant alteration in microhardness. Results of the present work demonstrate the superiority of the WEDM process over the conventional miniature gear manufacturing processes.  相似文献   

14.
In this work, the effect of fabrication parameters on the pore concentration of aluminum metal foam, manufactured by the powder metallurgy process, has been studied. The artificial neural network (ANN) technique has been used to predict pore concentration as a function of some key fabrication parameters. Aluminum metal foam specimens were fabricated from a mixture of aluminum powders (mean particle size 60 μm) and NaCl at 10, 20, 30, 40(wt)% content under a pressure of 200, 250, and 300 MPa. All specimens were then sintered at 630°C for 2.5 h in argon atmosphere. For pore formation (foaming), sintered specimens were immersed into 70°C hot running water. Finally, the pore concentration of specimens was recorded to analyze the effect of fabrication parameters (namely, NaCl ratio, NaCl particle size, and compacting pressure) on the foaming behavior of compacted specimens. It has been recorded that the above-mentioned fabrication parameters are effective on pore concentration profile while pore diameters remain unchanged. In the ANN training module, NaCl content (wt)%, NaCl particle size (μm), and compacting pressure (MPA) were employed as inputs, while pore concentration % (volume) of compacts related to fabrication parameters was employed as output. The ANN program was successfully used to predict the pore concentration % (volume) of compacts related to fabrication parameters.  相似文献   

15.
3D metal micro-mold fabricated through the micro double-staged laminated object manufacturing process is formed via stacking and fitting of multi-layer 2D micro structures. In this paper, it is suggested that micro-electric resistance slip welding technology be adopted to optimize the connection of micro structures in 3D metal micro-mold. Moreover, the deposition effect of tungsten electrode which was formed on the micro-mold surface and produced during micro-electric resistance slip welding is also studied. Firstly, the temperature field of electric resistance slip welding was simulated by ANSYS software and the maximum temperature in the slip welding area is 1,219 °C when the number of slip welding discharge is 160, which is far lower than the melting point of tungsten electrode material (3,410 °C). Hence, bulk tungsten will not shed during slip welding; however, the wear of the tungsten electrode will be deposited on the surface of the micro-mold in micro-particle shape. Secondly, the influence of slip welding discharge and surface roughness of tungsten electrode on tungsten deposition effect is studied and the study shows that: the content of tungsten within the slip welding area increases gradually as the number of slip welding discharge increases, and decreases gradually as surface roughness of tungsten electrodes increases. Finally, under 160 time’s slip welding discharge and using tungsten electrodes (0.5-mm diameter and 0.12-μm surface roughness), the 3D metal micro-molds which contains 0.4 % tungsten in slip welding area and has a good quality surface was obtained.  相似文献   

16.
In this research, a new integrated neural-network-based approach is presented for the prediction and optimal selection of process parameters in die sinking electro-discharge machining (EDM) with a flat electrode (planing mode). A 3–6–4–2-size back-propagation neural network is developed to establish the process model. The current (I), period of pulses (T), and source voltage (V) are selected as network inputs. The material removal rate (MRR) and surface roughness (Ra) are the output parameters of the model. Experimental data were used for training and testing the network. The results indicate that the neural model can predict process performance with reasonable accuracy, under varying machining conditions. The effects of variations of the input machining parameters on process performance are then investigated and analyzed through the network model. Having established the process model, a second network, which parallelizes the augmented Lagrange multiplier (ALM) algorithm, determines the corresponding optimum machining conditions by maximizing the MRR subject to appropriate operating and prescribed Ra constraints. The optimization procedure is carried out in each level of the machining regimes, such as finishing (Ra≤2 μm), semi-finishing (Ra≤4.5 μm), and roughing (Ra≤7 μm), from which, the optimal machining parameter settings are obtained. The optimization results have also been discussed, verified experimentally, and the amounts of relative errors calculated. The errors are all in acceptable ranges, which, again, confirm the feasibility and effectiveness of the adopted approach.  相似文献   

17.
Laser composite surfacing (LCS) has emerged as an alternative photon-driven manufacturing technology for the fabrication of composite coatings to enhance the tribomechanical properties of various aluminum alloys. The current research presents an analysis on optimization of laser processing parameters for Ni-WC composite coating deposited on AA5083 aluminum alloy in order to improve its tribomechanical properties. To carry out the investigation, Taguchi's optimization method using a standard L16 (34) orthogonal array was employed. Thereafter, the results were analyzed using signal-to-noise (S/N) ratio response analysis and Pareto analysis of variance (ANOVA). Finally, confirmation tests with the best parameter combinations obtained in the optimization process were made to demonstrate the progress made. Results showed that the surface hardness (953 Hv) and roughness (0.81 μm) of coated AA5083 samples was enhanced by 9.27 and 13.14%, respectively. The tribological behavior of LCS samples was investigated using a ball-on-plate tribometer against a counterbody of 440c steel. It was revealed that the wear of the Ni-WC-coated samples improved by around 2.5 times. For lower applied loads, the coating exhibited an abrasive wear mode and a reduction in plastic deformation.  相似文献   

18.
The micromilling tool is one of the key factors affecting micromilling performance. The design and fabrication of micromilling tools are still behind the increasing requirements in miniature component fabrication. How to estimate the fabrication accuracy of a newly designed micromilling tool is one of the urgent issues for micro tooling. This paper introduces an accuracy analysis method in the fabrication of micromilling tools by wire electrical discharge machining (WEDM) process. Taking two typical micro ball end mills into consideration, the micro tool fabrication process is kinematically modeled and analyzed. Analytical results show that the final fabrication accuracy has a close relationship with the designed micro tool geometry. The fabrication procedures can be arranged based on the kinematical analysis, and the final fabrication accuracy also is affected by it. The radius errors of the fabricated micro ball end mill prototype are within ±2μm, which is higher than that of commercially available similar ones. It verifies the proposed accuracy analysis method.  相似文献   

19.
An in-house developed continuous wave CO2 laser-based rapid manufacturing was deployed to fabricate porous structures of Inconel-625 using a new cross-thin-wall fabrication strategy. Studies on the mechanical and metallurgical properties of these porous structures were carried out with laser energy per unit traverse length in the range of 150–300 kJ/m, powder fed per unit traverse length in the range of 16.67–36.67 g/m and transverse traverse index in the range of 0.7–1.3. The processing parametric dependence showed that the powder fed per unit traverse length was a predominating parameter in determining the porosity of the structures, followed by transverse traverse index and laser energy per unit traverse length. The compression testing of fabricated porous structures showed that the material had anisotropy up to 20% for 0.2% yield strength. It was found that the yield strength of the fabricated structures followed the power law and decreased from 423?±?8 MPa for 2.63?±?0.14% porosity to 226?±?6.8 MPa for 11.57?±?0.52% porosity. Scanning electron microscopy showed that shape of the pores was triangular due to the cross-thin-wall fabrication strategy and the observed values of microhardness were in the range 256–370 VHN0.98N. These studies are expected to augment our knowledge on the fabrication of porous structures with independent control on porosity and yield strength, which are important prerequisites for some of the prosthetic and engineering components in niche areas of applications.  相似文献   

20.
The demand for manufacturing microscale components for applications in electronic, biological, and microtool industries has resulted in a reduction in the overall size of machine tools. This trend has motivated the development of new measurement techniques to accurately determine the position of the tool. In this study, two noncontact methods to control the initial position of micro- and meso-scale tools and trace the tool position are described: a laser-based measurement system and a halogen lamp-based measurement system. To evaluate the feasibility of these measurement systems, the prototype per each measurement has been constructed. The laser-based measurement system had a positioning error of ±4.5 μm and the halogen lamp-based measurement system had a positioning error of ±2 μm. Several experiments and simulations were performed to identify the effects of a range of factors likely to be encountered in real-world situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号