首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种通用宽带MIMO信道模型   总被引:1,自引:1,他引:0       下载免费PDF全文
张明  张建华  高新颖  张平 《电子学报》2006,34(10):1758-1762
针对宽带的MIMO信道建模问题,提出一种通用多天线信道模型及其构造方法.该方法把克罗内克积应用到频域,同时提出频域散射衰落加权因子的概念,由此导出一种室外宽带MIMO散射分布模型.经过简化,该模型还可以应用到室内场景.仿真结果表明,这种通用信道模型能够准确的描述出宽带MIMO信道的视距(LoS)、非视距(NLoS)、室内外散射特征以及孔径效应.  相似文献   

2.
为了满足下一代无线通信的需求,基于最近提出的非对称毫米波大规模多输入多输出(multipleinput multiple-output, MIMO)系统架构,研究了非对称毫米波大规模MIMO系统信道特性——信道非对称性. 根据非对称毫米波大规模MIMO系统架构和影响毫米波信道非对称性的主要因素,提出了刻画上下行信道非对称性的新参数——非对称因子. 同时利用实验室自行研发的射线跟踪平台对非对称毫米波信道进行仿真分析. 结果表明,基站收发天线阵列配置不同是导致信道非对称性的根本原因,复杂的传播环境使得这种非对称性更加突出,严重情况下室内场景非对称因子可达到?30 dB左右. 同时室外视距(line-of-sight, LoS)和非视距(non-line-of-sight, NLoS)场景下的非对称因子累积分布函数(cumulative distribution function, CDF)与高斯分布拟合程度较好,而NLoS场景下明显比LoS场景下的非对称因子小. 因此,非对称因子能够直观地描述出不同场景中上下行信道的非对称程度,而且非对称毫米波大规模MIMO系统也应以场景为导向进行信道特性分析.  相似文献   

3.
An improved MIMO radio channel simulator is proposed, based on the most popular correlation-based MIMO channel model called Kronecker model and the sum-of-sinusoids (SoS) method which is widely used to generate Rayleigh fading waveforms with temporal correlation. Firstly, a simplified simulation model for generating multiple independent Rayleigh fading waveforms is presented, which employs only one random variable to set all Doppler frequency components in all waveforms. Next, a fast spatial correlation calculation technique, in a closed-form expression implemented by the Fourier Transform both for outdoor and indoor multiple cluster scattering environments, is introduced, which accurately reproduces the desired spatial correlation properties and indicates a direct dependence between spatial correlation and channel physical parameters. The ergodic and outage capacity of the simulated channel are also evaluated with respect to different azimuth of arrival and azimuth of departure (AoA/AoD) under the condition of 3GPP SCM (3rd Generation Partnership Project Spatial channel model) [23]. The presented simulator is therefore suitable for the theoretical analysis of MIMO radio systems, including dynamic system simulation.  相似文献   

4.
Multiple transmitters and receivers can be used to provide high link capacity in future wireless systems. Herein, an analysis of indoor environment multiple-input-multiple-output (MIMO) measurements in the industrial, scientific, and medical (ISM) band at 5.8 GHz is performed and the possible increase in capacity, utilizing multiple transmitters and receivers is examined. The investigation shows that in the measured indoor environment, the scattering is sufficiently rich to provide substantial link capacity increases. Furthermore, the effect of intra-element spacing on the channel capacity is studied. Our investigation also shows that the envelope of the channel coefficients for this obstructed-line-of-sight (OLOS) indoor scenario is approximately Rayleigh distributed and the MIMO channel covariance matrix can be well approximated by a Kronecker product of the covariance matrices describing the correlation at the transmitter side and the receiver side, respectively. A statistical narrowband model for the OLOS indoor MIMO channel based on this covariance structure is presented.  相似文献   

5.
Multiple-input–multiple-output (MIMO) precoder design for frequency-selective fading channels using partial channel information based on the spatial and path correlation matrices is presented. By representing a frequency-selective fading channel as a multipath model with $L$ effective paths, a general precoding structure is proposed and used to derive optimum precoding designs that maximize Jensen's upper bound on the channel ergodic capacity under the transmitted power constraint for two cases, i.e., uncorrelated and correlated channel paths. Analytical results show that, in the uncorrelated case, the precoder structure consists of a number of parallel precoders for frequency-flat fading channels. The power assignment to each precoder and the power allocation over the eigenmodes of each precoder are calculated based on the power of channel paths and the eigenvalues of the transmit correlation matrix. In the correlated case, the precoder structure is an eigenbeamformer with the beams referred to a function of eigenvectors of the Kronecker product of path and transmit correlation matrices. Furthermore, the power allocated to each eigenmode can be obtained from a statistical water-pouring policy that is specified by the product of eigenvalues of the transmit antenna and path correlation matrices. Simulation results for different scenarios indicate that the proposed precoder can increase the ergodic capacity of MIMO systems in a frequency-selective fading environment with spatial and path correlations, and its offered capacity gain is increased with the level of correlation and numbers of antennas and channel paths.   相似文献   

6.
Based on frequency domain measurements in the 0.9-1.1-GHz band, an autoregressive model for the frequency response of the indoor radio channel is introduced. It is shown that a second-order process is sufficient to represent the important statistical characteristics of the channel both in the frequency domain and the time domain where each pole identifies the arrival of a cluster of paths. A comparison is made between the statistical characteristics of the empirical data and of the channel responses regenerated from the second-order AR processes. Four methods to regenerate the indoor radio channel responses from a second-order AR model are proposed. The accuracy of the methods is examined by comparing the cumulative distribution functions of the RMS delay spread and the 3-dB width of the frequency correlation function with that of the measurements performed in global, local, and mixed indoor radio propagation experiments  相似文献   

7.
A low-complexity hardware emulator is proposed for wideband, correlated, multiple-input multiple-output (MIMO) fading channels. The proposed emulator generates multiple discrete-time channel impulse responses (CIR) at the symbol rate and incorporates three types of correlation functions of the subchannels via Kronecker product: the spatial correlation between transmit or receive elements, temporal correlation due to Doppler shifts, and inter-tap correlation due to multipaths. The Kronecker product is implemented by a novel mixed parallel-serial (mixed P-S) matrix multiplication method to reduce memory storage and to meet the real-time requirement in high data-rate, large MIMO size, or long CIR systems. We present two practical MIMO channel examples implemented on an Altera Stratix III EP3SL150F FPGA DSP development kit: a 2-by-2 MIMO WiMAX channel with a symbol rate of 1.25 million symbols/second and a 2-by-6 MIMO underwater acoustic channel with 100-tap CIR. Both examples meet real-time requirement using only 12–14% of hardware resources of the FPGA.  相似文献   

8.
A propagation model for the prediction of indoor radio channel characteristics at millimetre-wave frequencies, based on geometrical optics is described. This model has been shown to agree well with wide-band measurements carried out at Eindhoven University of Technology [8]. Simulation results for 4th and 6th order reflection are compared with corresponding measured data obtained in small and medium size rooms. The influence of objects located inside the room superstructure, on the indoor radio channel characteristics, is analysed. The agreement between measured and simulated results, confirms the validity of the proposed simulation method.J.J.G. Fernandes would like to thank JNICT — Portugal, for sponsorship.  相似文献   

9.
Cognitive radio combined with multiple-input multiple-output (MIMO) communications provides high data rate, efficiency and high reliability. One of the most important challenges in MIMO communication is combating MIMO multipath channel. MIMO blind equalizers and channel estimators combat MIMO multipath channels without the use of training or pilot sequences. First, the multipath channel is converted into instantaneous mixture channel (IMC), using second-order statistics of the data. Then using higher-order statistics, these mixtures are separated. However, proper selection of IMC is a major challenge. In this paper, a novel blind algorithm for choosing the best IMC is proposed. The proposed algorithm is based on the cumulant value of the received signal.  相似文献   

10.
Systems that employ multiple antennas in both the transmitter and the receiver of a wireless system have been shown to promise extraordinary spectral efficiency. With full channel knowledge at the transmitter and receiver, Raleigh and Cioffi (1998) proposed a spatio-temporal coding scheme, discrete matrix multitone (DMMT), to achieve asymptotically optimum multiple-input-multiple-output (MIMO) channel capacity. The DMMT can be regarded as an extension of the discrete multitone for a digital subscriber lines (DSL) system to the MIMO wireless application. However, the DMMT is basically impracticable in nonstationary wireless environments due to its high-computational complexity. Exploring second-order statistics, we develop an efficient adaptive blind coding scheme for a high-capacity time-division duplexing (TDD) system with slow time-varying frequency-selective MIMO channels. With this method, neither a training sequence nor feedback of channel information is required in the proposed blind approach. Besides, the computational complexity of the proposed scheme is significantly lower than that of the coding scheme described by Raleigh and Cioffi. Simulation results show that the proposed architecture works efficiently in indoor wireless local area network applications.  相似文献   

11.
Communication over multiple-input/multiple-output (MIMO) channels of arbitrary coherence is considered in light of a mean square estimation error (MSEE) criterion. Earlier work in the field has focused on fully coherent channels and determined that use of a singular value decomposition (SVD) of the channel transfer function matrix can realize the capacity of the MIMO channel. More recently, research has shown that the use of arbitrary orthonormal channel excitation vectors can maximize expected capacity over fully incoherent Rayleigh fading MIMO channels. Partially coherent channels have generally been examined only in terms of their degrading influence on capacity. In this discussion, channel excitation techniques are proposed that minimize an MSEE criterion over an ensemble of MIMO channels of arbitrary coherence. The algorithms rely on only the second-and fourth-order moments of the channel transfer function. Two experiments were conducted to examine the new strategies. Using measured MIMO channel transfer function ensembles-one from an underwater acoustic channel and others from RF wireless channels-the performance of the strategies are compared. The new techniques outperform orthonormal signaling based on SINR or capacity metrics while requiring substantially less channel feedback than needed by a channel decomposition approach.  相似文献   

12.
A 3-D reference model for wideband multiple-inputmultiple-output (MIMO) mobile-to-mobile (M-to-M) channels is reviewed along with its corresponding first- and second-order channel statistics. To validate the reference model, an experimental MIMO M-to-M channel-sounding campaign was conducted for M-to-M vehicular communication with vehicles that travel along surface streets and expressways in a metropolitan area. To compare the first- and second-order channel statistics that were obtained from the reference model with those obtained from the empirical measurements, a new maximum-likelihood-based stochastic estimator is derived to extract the relevant model parameters from the measured data. The measured data is processed and compared with the analytical results. The close agreement between the analytically and empirically obtained channel statistics confirms the utility of the proposed reference model and the method for estimating the model parameters.   相似文献   

13.
The algebraic structure of frequency-selective MIMO channels   总被引:1,自引:0,他引:1  
The theory of homogenous matrix polynomials provides a clear and powerful framework for the characterization of frequency selective multiple-input multiple-output (MIMO) channels. The concept proposed in this paper is a natural unification of methods, known from flat fading MIMO channels and frequency selective single-input single-output (SISO) channels. From the Kronecker canonical form of the channel equation, several subchannels can be identified. Each of them is related to an elementary divisor or minimal index of the channel. The elementary divisors are equivalent to the roots of the characteristic polynomial for SISO channels, whereas the minimal indices characterize the possible transmit or receive diversity in such channels. The knowledge of these values allows us to determine the necessary filter order, the minimal redundancy, and the conditions on the precoder such that a finite impulse response filter can suppress all intersymbol and interchannel interference completely.  相似文献   

14.
一种宽带航空无线信道的模拟方法   总被引:1,自引:1,他引:0  
文中分析了飞机处于停场、滑行、起飞、降落时飞机四种状态的航空无线信道模型,提取了四种状态下典型信道参数。同时针对航空通信中的宽带系统,通过信道化处理方法,将宽带信道划分成多个并行的窄带信道,设计了一种宽带航空信道模拟系统,可用于解决硬件平台受限于A/D采样速率的瓶颈,降低硬件运算时间,该模拟系统可以完成飞机不同状态下,航空通信的系统设计验证。  相似文献   

15.
A novel stochastic channel model for the indoor propagation channel is presented. It is especially for, but not limited to future communication systems with multiple antennas like space division multiple access (SDMA), spatial filtering for interference reduction (SFIR), or multiple-input/multiple-output (MIMO). The model is designed for indoor scenarios, straight forward extendable to urban environments. It is based on physical wave propagation. The new approach describes the channel by multipath components, each characterized by its transfer matrix (including loss), delay, direction of arrival, and departure. The appearance and disappearance of multipath components over time is modeled as a birth and death process, a marked Poisson process. This enables first-time the correct modeling of spatial and temporal correlations. In each modeling step, path properties change according to the motion of transmitter and receiver. The changing delay times of propagation paths yield a realistic Doppler behavior of the channel. Deterministic ray tracing results are used to produce the huge data sets required for the statistical evaluation of the parameters of the proposed model. This method enables an automated parameter extraction for new environments or frequencies. The ray tracing tool has been verified by narrowband, wideband, and directional channel measurements. The novel stochastic spatial channel model allows the simulation of third-generation broadband radio systems including arbitrary antenna configurations and patterns. System simulations for the bit-error rate of radio links can be performed including intelligent antenna configurations like SDMA, SFIR, or MIMO. Furthermore, the capacity of complete systems can be investigated.  相似文献   

16.
This paper presents the results of narrow-band and wide-band propagation measurements carried out at 2.0 GHz in an indoor environment using a radiated-mode leaky feeder as the transmitting antenna. The narrow-band measurements were devised to measure attenuation of radio signals and the wide-band techniques to measure multipath impulse responses and their associated root mean square (RMS) delay spread. Analysis of the narrow-band data files shows that the received signal levels in the direction along the feeder generally decay exponentially due to the feeder-specific attenuation. The received signal levels in the direction radial to the feeder decrease slowly, and the distance-power law exponent is found to be smaller than one. The slow and fast variations of the received signal levels are also examined. The results reveal that the slow variations basically follow the log-normal distribution, while the fast variations fit the Rayleigh distribution in the direction parallel to the feeder and the Rician distribution in the direction radial to the feeder, respectively. Analysis of the wide-band data files reveals that the maximum value of the RMS delay spread is 60.6 ns and the RMS delay spread values are less than 42 ns 50% of the time. One therefore can conclude that the indoor channel excited by the radiated-mode leaky feeder has a broad coherent band-width and can support a data rate of up to 3.3 Mb/s without equalization  相似文献   

17.
基于多输入多输出(MIMO)窄带分布式散射模型和Kronecker信道模型,导出了宽带分布式散射模型的信道冲激响应矩阵,并利用蒙特卡洛方法和离散傅里叶变换,分别得到随机的时域信道矩阵和频域信道矩阵,建立了MIMO宽带分布式散射模型.在此基础上,通过对复高斯白噪声进行多普勒滤波的方法,实现了对MI-MO时变、宽带信道时域...  相似文献   

18.
The dramatic linear increase in ergodic capacity with the number of antennas promised by multiple-input multiple-output (MIMO) wireless communication systems is based on idealized channel models representing a rich scattering environment. Is such scaling sustainable in realistic scattering scenarios? Existing physical models, although realistic, are intractable for addressing this problem analytically due to their complicated nonlinear dependence on propagation path parameters, such as the angles of arrival and delays. In this paper, we leverage a recently introduced virtual representation of physical models that is essentially a Fourier series representation of wide-band MIMO channels in terms of fixed virtual angles and delays. Motivated by physical considerations, we propose a D-connected model for correlated channels defined by a virtual spatial channel matrix consisting of D nonvanishing diagonals with independent and identically distributed (i.i.d.) Gaussian entries. The parameter D provides a meaningful and tractable measure of the richness of scattering. We derive general bounds for the coherent ergodic capacity and investigate capacity scaling with the number of antennas and bandwidth. In the large antenna regime, we show that linear capacity scaling is possible if D scales linearly with the number of antennas. This, in turn, is possible if the number of resolvable paths grows quadratically with the number of antennas. The capacity saturates for linear growth in the number of paths (fixed D). The ergodic capacity does not depend on frequency selectivity of the channel in the wide-band case. Increasing bandwidth tightens the bounds and hastens the convergence of scaling behavior. For large bandwidth, the capacity scales linearly with the signal-to-noise ratio (SNR) as well. We also provide an explicit characterization of the wide-band slope recently proposed by Verdu. Numerical results are presented to illustrate the key theoretical results.  相似文献   

19.
Abstract-This paper presents a novel stochastic channel model for multiple-input multiple-output (MIMO) wireless radio channels. In contrast to state-of-the-art stochastic MIMO channel models, the spatial correlation properties of the channel are not divided into separate contributions from transmitter and receiver. Instead, the joint correlation properties are modeled by describing the average coupling between the eigenmodes of the two link ends. The necessary and sufficient condition for the proposed model to hold is that the eigenbasis at the receiver is independent of the transmit weights, and vice versa. The authors discuss the mathematical elements of the model, which can be easily extracted from measurements, from a radio propagation point of view and explain the underlying assumption of the model in physical terms. The validation of the proposed model by means of measured data obtained from two completely different measurement campaigns reveals its ability to better predict capacity and spatial channel structure than other popular stochastic channel models.  相似文献   

20.
Indoor MIMO Channel Modeling by Rigorous GO/UTD-Based Ray Tracing   总被引:1,自引:0,他引:1  
This paper presents a multiple-input-multiple- output (MIMO) channel model based on rigorous ray-tracing techniques, which is based on a full 3-D implementation of geometric optics and the uniform theory of diffraction (3-D GO/ UTD). Results obtained from measurements and simulations of the correlation matrix and capacity of a 2 times 2 MIMO system in specific indoor environments at a frequency of 2 GHz are presented. The channel capacity has been calculated for the different local areas considered in open- and office-area scenarios, starting from the measurements carried out there, as well as from the ray-tracing simulated channels. The rigorous and quantitative comparison between measurements and simulations shows that the model accuracy is sufficient for the analysis and design of the different aspects of the full MIMO system. The results from the ray-tracing model can also be used to extract general statistical characteristics and parameterize statistical models for different types of environments, without the need to carry out large and costly measurement campaigns. In addition, the measured data are used to study the impact of the channel on the achievable capacity of a 2 times 2 MIMO system in typical indoor scenarios at 2 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号