首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association with hyperplastic and malignant proliferation of epithelial cells.  相似文献   

2.
The Ca(2+)-dependent cell-cell adhesion molecules, termed cadherins, are subdivided into several subclasses. E (epithelial)- and P (placental)-cadherins are involved in the selective adhesion of epidermal cells. E-cadherin is expressed on the cell surfaces of all epidermal layers and P-cadherin is expressed only on the surfaces of basal cells. Ultrastructural studies have shown that E-cadherin is distributed on the plasma membranes of keratinocytes with a condensation in the intercellular space of the desmosomes. During human skin development P-cadherin expression is spatiotemporally controlled and closely related to the segregation of basal layers as well as to the arrangement of epidermal cells into eccrine ducts. In human skin diseases E-cadherin expression is markedly reduced on the acantholytic cells of tissues in pemphigus and Darier's disease. Cell adhesion molecules are now considered to play a significant role in the cellular connections of cancer and metastatic cells. Reduced expression of E-cadherin on invasive neoplastic cells has been demonstrated for cancers of the stomach, liver, breast, and several other organs. This reduced or unstable expression of E- and P-cadherin is observed in squamous cell carcinoma, malignant melanoma, and Paget's disease, but cadherin expression is conserved in basal cell carcinoma. Keratinocytes cultured in high calcium produce much more intense immunofluorescence of intercellular E- and P-cadherin than those cells grown in low calcium. E-cadherins on the plasma membrane of the keratinocytes are shifted to desmosomes under physiological conditions, and therein may express an adhesion function in association with other desmosomal cadherins. Soluble E-cadherins in sera are elevated in various skin diseases including bullous pemphigoid, pemphigus vulgaris, and psoriasis, but not in patients with burns. Markedly high levels in soluble E-cadherin are demonstrated in patients with metastatic cancers.  相似文献   

3.
The cadherins are a family of cell-cell adhesion molecules that mediate Ca2+-dependent homophilic interactions between cells and transduce signals by interacting with cytoplasmic proteins. In the hippocampus, immunostaining combined with confocal microscopy revealed that both neural- (N-) and epithelial- (E-) cadherin are present at synaptic sites, implying a role in synaptic function. Pretreatment of hippocampal slices with antibodies (Abs) raised against the extracellular domain of either N-cad or E-cad had no effect on basal synaptic properties but significantly reduced long-term potentiation (LTP). Infusion of antagonistic peptides containing the His-Ala-Val (HAV) consensus sequence for cadherin dimerization also attenuated LTP induction without affecting previously established LTP. Because the intense synaptic stimulation associated with LTP induction might transiently deplete extracellular Ca2+ and hence potentially destabilize cadherin-cadherin interactions, we examined whether slices could be protected from inhibition by N-cad Abs or HAV peptides by raising the extracellular Ca2+ concentration. Indeed, we found that high extracellular Ca2+ prevented the block of LTP by these agents. Taken together, these results indicate that cadherins are involved in synaptic plasticity, and the stability of cadherin-cadherin bonds may be regulated by synaptic stimulation.  相似文献   

4.
Transformation progression toward more malignant behavior often results from a loss of epithelial cell behavior, especially cell-cell adhesion. E1A cooperates with ras to transform primary epithelial cells such that they maintain epithelial cell differentiation, including the proper localization of adherens junctions (AJs). Second exon mutants of E1A 12S cooperate with ras to produce a more aggressively transformed phenotype, termed hypertransformation, that includes the loss of adhesion. Such hypertransformation can also be achieved by the addition of activated Rac1 to cells expressing wild-type E1A and ras, suggesting that actin reorganization may be important for the hypertransformed phenotype. Primary epithelial cells expressing hypertransforming mutants of E1A or V12Rac1 exhibit the loss of cortical actin filaments. In these cells, AJ complexes do not incorporate alpha-catenin, fail to associate with the cytoskeleton, and fail to localize to the plasma membrane, resulting in the destabilization of the AJ components and a loss of function. Loss of these epithelial cell characteristics predisposes these cells to a more malignant phenotype due to the loss of cell-cell adhesion. Taken together, these results suggest a novel mechanism of regulation of AJ function in tumor progression that involves the correct targeting of the AJ components, and this is affected by the status of cortical actin, which can be differentially affected by E1A or Rac1.  相似文献   

5.
Cadherin-mediated adhesion regulates transitions from initial cell-cell recognition to loosely adherent cell clusters and ultimately, to strongly compacted groups of cells in colonies. Recent studies have described distinct roles for intermolecular clustering of cadherins as well as interactions of cadherin with the actin cytoskeleton in establishing cell-cell adhesion. Integrating cytomechanical roles of cadherin-mediated adhesion will lead to a greater understanding of how cadherins regulate tissue morphogenesis.  相似文献   

6.
Two major types of plaque-bearing adhering junctions are commonly distinguished: the actin microfilament-anchoring adhaerens junctions (AJs) and the desmosomes anchoring intermediate-sized filaments (IFs). Both types of junction usually possess the common plaque protein, plakoglobin, whereas the other plaque proteins and the transmembrane cadherins are mutually exclusive. For example, AJs contain E-, N-, or P-cadherin in combination with alpha- and beta-catenin, vinculin and alpha-actinin, whereas in desmosomes, desmogleins and desmocollins are associated with desmoplakin and one or several of the plakophilins (PP1-3). Here we describe a novel type of adhering junction comprising proteins of both AJs and desmosomes and the tight junction (TJ) plaque protein, ZO-1, in a newly established, liver-derived tumorigenic rat cell line (RMEC-1). By immunofluorescence microscopy, cell-cell contacts are characterized by mostly continuous-appearing lines which are usually resolved by electron microscopy as extended arrays of closely spaced small plaque subunits. These plaque-covered regions are positive for plakoglobin, alpha- and beta-catenin, the arm-repeat protein p120, vinculin, desmoplakin and protein ZO-1. They are positive for E-cadherin in cultures early on in passaging, but tend to turn negative for all known cadherins in densely grown cultures. On immunoblotting SDS-PAGE-separated proteins from dense-grown cell monolayers, "pan-cadherin" antibodies have reacted with a band at approximately 140 kDa, identified as N-cadherin by peptide fingerprinting of the immunoprecipitated protein, which for reasons not yet clear is modified or masked in immunolocalization experiments. The exact histological derivation of RMEC-1 cells is not known. However, the observations of several endothelial markers and the fact that all cells are rich in IFs containing vimentin and/or desmin, while only subpopulations also reveal IFs containing CKs 8 and 18, is suggestive of a mesenchymal, probably endothelial origin. We discuss the molecular relationship of this novel type of extended junction with other types of adhering junctions.  相似文献   

7.
The cadherins mediate cell adhesion and play a fundamental role in normal development. They participate in the maintenance of proper cell-cell contacts: for example, reduced levels of epithelial cadherin (E-cadherin) correlate with increased invasiveness in many human tumour cell types. The cadherins typically consist of five tandemly repeated extracellular domains, a single membrane-spanning segment and a cytoplasmic region. The N-terminal extracellular domains mediate cell-cell contact while the cytoplasmic region interacts with the cytoskeleton through the catenins. Cadherins depend on calcium for their function: removal of calcium abolishes adhesive activity, renders cadherins vulnerable to proteases (reviewed in ref. 4) and, in E-cadherin, induces a dramatic reversible conformational change in the entire extracellular region. We report here the X-ray crystal structure at 2.0 A resolution of the two N-terminal extracellular domains of E-cadherin in the presence of calcium. The structure reveals a two-fold symmetric dimer, each molecule of which binds a contiguous array of three bridged calcium ions. Not only do the bound calcium ions linearize and rigidify the molecule, they promote dimerization. Although the N-terminal domain of each molecule in the dimer is aligned in a parallel orientation, the interactions between them differ significantly from those found in the neural cadherin (N-cadherin) N-terminal domain (NCD1) structure. The E-cadherin dual-domain structure reported here defines the role played by calcium in the cadherin-mediated formation and maintenance of solid tissues.  相似文献   

8.
Plakoglobin is a major component of both desmosomes and adherens junctions. At these sites it binds to the cytoplasmic domains of cadherin cell-cell adhesion proteins and regulates their adhesive and cytoskeletal binding functions. Plakoglobin also forms distinct cytosolic protein complexes that function in pathways of tumor suppression and cell fate determination. Recent studies in Xenopus suggest that cadherins inhibit the signaling functions of plakoglobin presumably by sequestering this protein at the membrane and depleting its cytosolic pool. To understand the reciprocal regulation between desmosomal cadherins (desmoglein and desmocollin) and plakoglobin, we have sought to identify the binding domains involved in the formation of these protein complexes. Plakoglobin comprises 13 central repeats flanked by amino-terminal and carboxyl-terminal domains. Our results show that repeats 1-4 are involved in binding desmoglein-1. In contrast, the interaction of plakoglobin with desmocollin-1a is sensitive to deletion of either end of the central repeat domain. The binding sites for two adherens junction components, alpha-catenin and classical cadherins, overlap these sites. Competition among these proteins for binding sites on plakoglobin may therefore account for the distinct composition of adherens junctions and desmosomes.  相似文献   

9.
A number of type-II classic cadherin cell-cell adhesion molecules are expressed in the brain. To investigate their roles in brain morphogenesis, we selected three type-II cadherins, cadherin-6 (cad6), -8 (cad8) and -11 (cad11), and mapped their expressions in the forebrain and other restricted regions of postnatal mouse brains. In the cerebral cortex, each cortical area previously defined was delineated by a specific combinatorial expression of these cadherins. The thalamus and other subcortical regions of the forebrain were also subdivided by differential expression of the three cadherins; e.g., the medial geniculate body expressed only cad6; the ventral posterior thalamic nucleus, cad6/cad11; and the anteroventral thalamic nucleus, cad6/cad8. Likewise, in the olivocerebellar system, each subdivision of the inferior olive expressed a unique set of the three cadherins, and the cerebellar cortex had parasagittal stripes of cad8/cad11 expressions. Close analysis of these cadherin expression patterns revealed that they are correlated with neuronal connection patterns. Examples of these correlations include that cad6 delineates the auditory projection system, cad6/cad8/ cad11 are expressed by part of the Papez circuit, and cad6/cad8 are expressed by subdivisions of the olivo-nuclear circuit. Together with the recent finding that the cadherin adhesion system is localized in synaptic junctions, our findings support the notion that cadherin-mediated cell-cell adhesion plays a role in selective interneuronal connections during neural network formation.  相似文献   

10.
11.
The desmocollins are one of two types of putative adhesive proteins present in the desmosome type of cell junctions, the other type being the desmogleins; both are members of the cadherin superfamily. Each type of desmosomal cadherin occurs as a number of isoforms which have differing tissue distribution; within stratifying epithelia some isoforms occur only suprabasally. We have sought to analyse desmocollin function by reducing the amount of protein using antisense gene expression in the widely studied Madin-Darby canine kidney (MDCK) cell line. Although this is a simple epithelial cell line, we show by Northern blot analysis that it expresses multiple isoforms of the desmosomal cadherins. Desmocollins DSC2 and DSC3 and desmogleins DSG2 and DSG3 (the pemphigus vulgaris antigen PVA) were detected, but DSC1 and DSG1, which are present exclusively in the suprabasal layers of the epidermis, were absent. The major desmocollin isoform was the type 2 (DSC2). A DSC2 clone isolated from a MDCK cDNA library had the same cell adhesion recognition sequence (Phe-Ala-Thr) as human, bovine and mouse type 2 isoforms. This sequence appears diagnostic for the three desmocollin isoforms. This cDNA clone was used to isolate a genomic DSC2 clone; antisense expression of this clone in MDCK cells resulted in a drastic reduction of desmocollin protein as judged by Western blots; Dsc3 was not upregulated to compensate for the loss of Dsc2. This antisense expression significantly altered desmosome assembly. There was a loss of punctate staining evident when using a desmosome plaque protein (desmoplakin) antibody. Electron microscopy revealed that there was a reduction in the number of desmosomes and a notable increase in the asymmetry of plaques between adjacent cells. Immunolabelling showed that similar levels of desmogleins and E-cadherin were present. Immunoelectron microscopy also showed that many vesicular structures were labelled, at intervals along the lateral membranes between cells. The distinctive loose organization of the remaining desmosomes may originate in modifications to the targeting and incorporation of proteins into fully assembled plaques. Other junctions were unaffected and the cells maintained their integrity as a confluent monolayer.  相似文献   

12.
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the beta-catenin.  相似文献   

13.
The earliest commitment to the formation of glomeruli is recognizable in S-shaped bodies. Although cell-cell adhesion seems likely to play a crucial role in this process, how glomerular epithelial cells segregate from the other parts of the nephron is unknown. In this study, immunofluorescence microscopy and monoclonal antibodies specific for mouse R-, E-, P- and N-cadherins were used to examine which of these adhesion molecules are involved in glomerulogenesis of the mouse kidney. Weak R-cadherin staining was first found in the vesicle stage, becoming restricted to glomerular visceral epithelial cells (VEC) during the S-shaped body stage. The intensity of this staining became stronger in the capillary loop stage, whereas parietal epithelial cells (PEC) and tubular cells did not stain. In the maturing stage, VEC gradually lost their staining for R-cadherin. E-cadherin was detected in ureteric buds and the upper limb of S-shaped bodies. From the capillary loop to the maturing stage, anti-E-cadherin stained epithelial cells in all tubule segments, but no label was seen in VEC or PEC. P-cadherin was also stained in the ureteric buds and in the upper limb of S-shaped bodies. N-Cadherin was weakly stained in cells at the vesicle stage, but thereafter staining of N-cadherin was not detected at any stage of glomerular formation. Immunoelectron microscopy of differentiating VEC was performed using antibodies specific to alpha-catenin, which is associated with cadherin. Subsequently, immunogold particles identifying alpha-catenin were localized on junctions between primary processes of VEC. These findings indicate that R-cadherin is uniquely expressed in differentiating VEC, suggesting an important role in the early stages of glomerulogenesis.  相似文献   

14.
Human colitis is a condition associated with a spectrum of altered morphologic changes and cellular adhesion. The role of cadherins, which are powerful morphoregulatory cell adhesion molecules, in colitis is provocative and as yet unknown. Herein, we present results that suggest a strong correlation between the deregulation of two cadherin molecules, E- and P-cadherins, and the progression of human colitis. We examined the expression and structural integrity of E- and P-cadherins in inflamed, dysplastic, or neoplastic human ulcerative colitis (UC) (n=58), human Crohn's colitis (n = 30), and normal tissue (n = 20) to assess cadherin function in normal and abnormal epithelium. E-cadherin is strongly expressed in normal colorectal epithelium, whereas in left-sided UC it is either down-regulated or has a single-base pair mutation in exon 4 resulting in an amino acid alteration (6 of 58 UC cases). By contrast, P-cadherin is dramatically up-regulated in both Crohn's disease and ulcerative colitis and especially in dysplastic ulcerative tissue. In vitro transfected SW-480 colorectal cells containing E-cadherin mutations identical to those in vivo were associated with increased spontaneous disaggregation compared with cells transfected with wild-type E-cadherin. Based on this evidence, we hypothesize that a small subset of colorectal cells expressing mutant E-cadherin are associated with widespread ulceration, whereas those expressing P-cadherin are associated with a rapidly dividing immature phenotype that includes dysplasia. The differential expression of mutated and wild-type cadherins examined herein are associated with a broad spectrum of abnormal epithelial phenotypes, lymphocyte integrin binding, and resistance to denudation, as is seen in the colitis adenocarcinoma sequence.  相似文献   

15.
The cadherins are major mediators of calcium-dependent cell-cell adhesion and are also involved in cell signaling pathways during development. The classical cadherins, which are the definitive group of the cadherin superfamily, are transmembrane proteins that consist of an extracellular domain of five cadherin repeats, including an HAV tripeptide conserved in one binding surface within the first domain, and a highly conserved cytoplasmic domain that interacts with the actin cytoskeleton via the catenin proteins. These cadherins play major roles in vertebrate morphogenesis; they are expressed widely throughout development, antibodies to specific cadherins perturb a variety of developmental processes, and many gene knockouts are lethal at early stages of development. Phylogenetic analysis of the "classical" cadherins shows that in the vertebrates there are four paralog families. The rate of evolutionary change is radically different between the different paralogs, indicating that there are significantly different selection pressures on the functions of the various cadherins, both between the different paralogs in a single organism lineage and between different organism lineages within a single paralog family. There is also evidence for gene conversion between the E-cadherin and P-cadherin paralogs in Gallus gallus and possibly Xenopus laevis, but not between the same paralogs in the mammalian lineages. A scheme for the origin of the paralogs within the vertebrate lineage based on these analyses indicates that the presence of the four paralog families is a characteristic of vertebrates and that variation of cadherin structure and function is a significant factor in morphological evolution of vertebrates.  相似文献   

16.
Cadherins are a family of calcium-dependent morphoregulatory molecules mediating cell-cell adhesion. More than a dozen cadherin subtypes are known to be expressed in the developing and mature CNS. Each of these subtypes shows a restricted and distinct expression pattern that differs from that of the other cadherins. During the formation of fiber tracts and neural circuits, each cadherin is expressed by a subset of neurite fascicles. The differential expression of cadherins provides a molecular code for the high degree of specificity and selectivity in neural circuit formation. This code may be a combinatorial one, since the expression of cadherins shows partial overlap. The expression data and experimental results available at present suggest a role for cadherins in aspects of axon outgrowth, axon navigation, axon fasciculation, axonal target recognition, and, finally, in synaptogenesis. However, the precise role of cadherins in some of these processes and their functional relationship to other molecules involved in neurite outgrowth remains to be experimentally established.  相似文献   

17.
BACKGROUND: The assembly of complex tissues during embryonic development is thought to depend on differential cell adhesion, mediated in part by the cadherin family of cell-adhesion molecules. The protocadherins are a new subfamily of cadherins; their extracellular domains comprise cadherin-like repeats but their intracellular domains differ significantly from those of classical cadherins. Little is known about the ability of protocadherins to mediate the adhesion of embryonic cells, or whether they play a role in the formation of embryonic tissues. RESULTS: We report the isolation and characterization of a novel protocadherin, termed NF-protocadherin (NFPC), that is expressed in Xenopus embryos. NFPC showed a striking pattern of expression in early embryos, displaying predominant expression within the deep, sensorial layer of the embryonic ectoderm and in a restricted group of cells in the neural folds, but was largely absent from the neural plate and surrounding placodal regions. Ectopic expression in embryos demonstrated that NFPC could mediate cell adhesion within the embryonic ectoderm. In addition, expression of a dominant-negative form of NFPC disrupted the integrity of embryonic ectoderm, causing cells in the deep layer to dissociate, though leaving the outer layer relatively intact. CONCLUSIONS: Our results indicate that NFPC is required as a cell-adhesion molecule during embryonic development, and its function is distinct from that of classical cadherins in governing the formation of a two-layer ectoderm. These results suggest that NFPC, and protocadherins in general, are involved in novel cell-cell adhesion mechanisms that play important roles in tissue histogenesis.  相似文献   

18.
Erythema multiforme (EM) represents a syndrome of chronic recurrent inflammatory skin disease. Depending on the severity and extent of skin and mucosal involvement, it is defined either as EM minor or EM major. In this study we demonstrate the presence of autoantibodies (aAbs) against desmoplakin I and II, two major proteins of the desmosomal plaque, in six of six patients with the severe variant of EM, EM major. Light microscopic studies of lesional skin and mucous membranes localized in vivo bound immunoglobulin G (IgG) in a dotted desmosomal pattern along the cytoplasmic membranes of keratinocytes. By immunoelectronmicroscopy, in vivo bound IgG was confined to the desmosomal plaques. These findings were confirmed by indirect immunolocalization studies that demonstrated the presence of IgG aAbs in the serum of patients during active disease. These aAbs did not only bind to desmosomal plaques of epithelial cells where they colocalized with defined murine monoclonal antibodies directed against desmoplakin I and II, but also labeled the intercalated discs of myocardial cells. Biochemical characterization of circulating IgG aAbs revealed desmoplakin I and II as actual target autoantigens. By passive transfer of serum into newborn mice, in vivo binding of serum aAbs to keratinocytes was shown. The findings presented in this study imply a humoral immune response in certain patients with EM major and indicate a potential pathogenetic role of aAbs against desmoplakin I and II in this disease.  相似文献   

19.
The cadherins are a family of homophilic adhesion molecules that play a vital role in the formation of cellular junctions and in tissue morphogenesis. Members of the integrin family are also involved in cell to cell adhesion, but bind heterophilically to immunoglobulin superfamily molecules such as intracellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, or mucosal addressin cell adhesion molecule (MadCAM)-1. Recently, an interaction between epithelial (E-) cadherin and the mucosal lymphocyte integrin, alphaEbeta7, has been proposed. Here, we demonstrate that a human E-cadherin-Fc fusion protein binds directly to soluble recombinant alphaEbeta7, and to alphaEbeta7 solubilized from intraepithelial T lymphocytes. Furthermore, intraepithelial lymphocytes or transfected JY' cells expressing the alphaEbeta7 integrin adhere strongly to purified E-cadherin-Fc coated on plastic, and the adhesion can be inhibited by antibodies to alphaEbeta7 or E-cadherin. The binding of alphaEbeta7 integrin to cadherins is selective since cell adhesion to P-cadherin-Fc through alphaEbeta7 requires >100-fold more fusion protein than to E-cadherin-Fc. Although the structure of the alphaE-chain is unique among integrins, the avidity of alphaEbeta7 for E-cadherin can be regulated by divalent cations or phorbol myristate acetate. Cross-linking of the T cell receptor complex on intraepithelial lymphocytes increases the avidity of alphaEbeta7 for E-cadherin, and may provide a mechanism for the adherence and activation of lymphocytes within the epithelium in the presence of specific foreign antigen. Thus, despite its dissimilarity to known integrin ligands, the specific molecular interaction demonstrated here indicates that E-cadherin is a direct counter receptor for the alphaEbeta7 integrin.  相似文献   

20.
Cadherins are homotypic adhesion molecules that classically mediate interactions between cells of the same type in solid tissues. In addition, E-cadherin is able to support homotypic adhesion of epidermal Langerhans cells to keratinocytes (Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. (1993) Nature (London) 361, 82-85) and heterotypic adhesion of mucosal epithelial cells to E-cadherin-negative intestinal intraepithelial T lymphocytes. Thus, we hypothesized that cadherins may play a wider role in cell-to-cell adhesion events involving T lymphocytes. We searched for a cadherin or cadherins in T lymphocytes with a pan-cadherin antiserum and antisera against alpha- or beta-catenin, molecules known to associate with the cytoplasmic domain of cadherins. The anti-beta-catenin antisera coimmunoprecipitated a radiolabeled species in T-lymphocyte lines that had a molecular mass of 129 kDa and was specifically immunoblotted with the pan-cadherin antiserum. Also, the pan-cadherin antiserum directly immunoprecipitated a 129-kDa radiolabeled species from an 125I surface-labeled Jurkat human T-cell leukemic cell line. After V8 protease digestion, the peptide map of this pan-cadherin-immunoprecipitated, 129-kDa species exactly matched that of the 129-kDa species coimmunoprecipitated with the beta-catenin antiserum. These results demonstrate that T lymphocytes express a catenin-associated protein that appears to be a member of the cadherin superfamily and may contribute to T cell-mediated immune surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号