首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The administration of methamphetamine to experimental animals results in damage to nigrostriatal dopaminergic neurons. In the present study, we demonstrated that both the acute repeated and the chronic administration of methamphetamine causes an increase in thiobarbituric acid reactive substances, which are indicators of lipid peroxidation, and superoxide dismutase activity in the rat striatum. The results of present study strengthen the notion that reactive oxygen species may play an important role in the methamphetamine-induced neurotoxicity.  相似文献   

2.
Pretreatment with psychostimulants such as methamphetamine (METH) results in augmented mesostriatal dopamine transmission upon a challenge administration of the drug. This effect can be blocked by dopamine antagonists and excitatory amino acid antagonists. However, no direct comparisons have been made with respect to the effects of a low-dose pretreatment regimen of METH on impulse and transporter-mediated dopamine release or to what extent glutamate release is altered by a pretreatment regimen with METH. The purpose of this study was to examine dopamine and glutamate efflux in the prefrontal cortex and striatum in rats pretreated with METH following either high potassium (80 microM) infusion or after a systemic injection of a low dose of METH. Extracellular dopamine and glutamate concentrations in the prefrontal cortex and striatum were measured in vivo by microdialysis. Potassium infusion increased extracellular dopamine and glutamate concentrations to a greater extent in the prefrontal cortex than in the striatum of METH-pretreated rats compared to saline-pretreated controls. A low dose METH challenge significantly increased extracellular dopamine but not glutamate concentrations in both prefrontal cortex and striatum of all animals. Moreover, the acute METH-induced increased in cortical dopamine efflux was significantly greater in rats pretreated with METH. Overall, these data are the first evidence that repeated METH administrations can enhance cortical glutamate efflux and indicate that a low dose pretreatment regimen of METH enhances dopamine transmission in the prefrontal cortex through both transporter and depolarization-induced mechanisms.  相似文献   

3.
Pretreatment with intermittent low-dose administrations of stimulants increases mesostriatal dopamine transmission upon administration of a challenge dose. This occurs without evidence of a long-term dopamine or serotonin depletion. The purpose was to examine whether pretreatment with low doses of methamphetamine enhances dopamine and/or glutamate efflux and the subsequent depletion of dopamine and serotonin produced by neurotoxic challenge doses of methamphetamine. Microdialysis was used to measure simultaneously extracellular concentrations of dopamine and glutamate in the striatum and prefrontal cortex of awake rats. Basal extracellular concentrations of dopamine and glutamate were unaltered following pretreatment with methamphetamine. The increase in methamphetamine-induced striatal dopamine efflux was not significantly different between methamphetamine and saline pretreated groups. In contrast, after high challenge doses of methamphetamine, dopamine efflux in prefrontal cortex was enhanced to a greater extent in methamphetamine pretreated rats as compared to saline pretreated controls. Acute methamphetamine did not enhance glutamate efflux in prefrontal cortex after pretreatment with saline or methamphetamine. The increase in striatal glutamate efflux was blunted in rats pretreated with methamphetamine. When measured 4 days later, dopamine and serotonin content in striatum was depleted in all rats acutely challenged with methamphetamine. However, these depletions were attenuated in rats pretreated with methamphetamine. An acute methamphetamine challenge did not affect dopamine tissue content in the prefrontal cortex of any rats. Serotonin content in cortex was depleted in all groups following the methamphetamine challenge administration, but these depletions were diminished in methamphetamine-pretreated rats. These results are the first evidence that an intermittent pretreatment regimen with low doses of methamphetamine, followed by a 1 week withdrawal, reduces the vulnerability of striatal dopamine and serotonin terminals and cortical serotonin terminals to methamphetamine neurotoxicity. These findings provide evidence for the mechanism leading to methamphetamine neurotoxicity.  相似文献   

4.
Recent studies have demonstrated the presence of many different neurotrophic factors in the developing and adult kidney. Due to its production of this mixture of neurotrophic factors, we wanted to investigate whether fetal kidney tissue could be beneficial for neuritic fiber growth and/or cell survival in intracranial transplants of fetal ventral mesencephalic tissue (VM). A retrograde lesion of nigral dopaminergic neurons was performed in adult Fischer 344 male rats by injecting 6-hydroxydopamine into the medial forebrain. The animals were monitored for spontaneous locomotor activity in addition to apomorphine-induced rotations once a week. Four weeks following the lesion, animals were anesthetized and embryonic day 14 VM tissue from rat fetuses was implanted stereotaxically into the dorsal striatum. One group of animals received a cograft of kidney tissue from the same embryos in the same needle track. The animals were then monitored behaviorally for an additional 4 months. There was a significant improvement in both spontaneous locomotor activity (distance traveled) and apomorphine-induced rotations with both single VM grafts and VM-kidney cografts, with the VM-kidney double grafts enhancing the motor behaviors to a significantly greater degree. Tyrosine hydroxylase (TH) immunohistochemistry and image analysis revealed a significantly denser innervation of the host striatum from the VM-kidney cografts than from the single VM grafts. TH-positive neurons were also significantly larger in the cografts compared to the single VM grafts. In addition to the dense TH-immunoreactive innervation, the kidney portion of cografts contained a rich cholinergic innervation, as evidenced from antibodies against choline acetyltransferase (ChAT). The striatal cholinergic cell bodies surrounding the VM-kidney cografts were enlarged and had a slightly higher staining density for ChAT. Taken together, these data support the hypothesis that neurotrophic factors secreted from fetal kidney grafts stimulated both TH-positive neurons in the VM cografts and cholinergic neurons in the host striatum. Thus, these factors may be combined for treatment of degenerative diseases involving both dopaminergic and cholinergic neurons.  相似文献   

5.
The activator protein-1 (AP-1) binding activities induced by a separate challenge with SKF38393 and quinpirole after 1 weeks' abstinence from chronic methamphetamine (4 mg/kg/day, 14 days) were increased significantly in the striatum, nucleus accumbens and cingulate cortex compared with the saline-treated controls. Quinpirole-, but not SKF38393-induced AP-1 binding activities were still significantly higher after a 4-week abstinence period in the chronic methamphetamine group than in the chronic saline control group. Downward sniffing, which occurred following a quinpirole-challenge, was significantly intensified after both a 1 and 4 weeks' abstinence from chronic methamphetamine. These results indicate that chronic administration of methamphetamine induces alterations of the interactions of dopamine D1 and D2 receptors which are reflected as enhanced AP-1 binding activities.  相似文献   

6.
7.
To determine acute postischemic metabolic changes of the ischemic rim under conditions of poor collateral circulation, we examined cerebral blood flow and glucose metabolism in the area of the brain around the ischemic tissue in 36 male spontaneously hypertensive stroke-prone rats (SHRSP) in the acute stage of focal ischemia. The right middle cerebral artery (MCA) was occluded dorsal to the rhinal fissure. Four hours after occlusion, local cerebral blood flow (LCBF), glucose content (LCGC), and glucose utilization (LCGU) were measured by quantitative autoradiographic techniques. The lumped constant was determined from the corresponding LCGC. LCBF showed a widespread and marked decrease in the cortex surrounding the ischemic core, in the thalamus, and in the medial portion of the striatum in the MCA-occluded hemisphere, while the lateral segment of the striatum showed an increase of 36%, compared with findings on the contralateral side. LCGC showed little regional variation, but there was an increase of 38% in the zone bordering the ischemic area. LCGU at the cortex surrounding the ischemic core and in the external capsule showed an increase of 55%. The cortex surrounding the ischemic core, the thalamus, and the lateral segment of the striatum in the MCA-occluded hemisphere showed significant decreases in LCGU. It has been speculated that a high accumulation of glucose reflects a demand for glucose for anaerobic glycolysis in the border areas and that such a demand is probably greater in cases of impaired oxygen delivery due to the presence of microcirculatory disturbances in the MCA-occluded SHRSP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We recently demonstrated that pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) exacerbates experimental parkinsonism induced by methamphetamine. The mechanism responsible for this effect remains to be elucidated. In this study, we investigated whether the exacerbation of chronic dopamine loss in DSP-4-pretreated animals is due to an impairment in the recovery of dopamine levels once the neurotoxic insult is generated or to an increased efficacy of the effects induced by methamphetamine. We administered different doses of methamphetamine either to DSP-4-pretreated or to intact Swiss-Webster mice and evaluated the methamphetamine-induced striatal dopamine loss at early and prolonged intervals. As a further step, we evaluated the striatal pharmacokinetics of methamphetamine, together with its early biochemical effects. We found that previous damage to norepinephrine terminals produced by DSP-4 did not modify the recovery of striatal dopamine levels occurring during several weeks after methamphetamine. By contrast, pretreatment with DSP-4 exacerbated early biochemical effects of methamphetamine, which were already detectable 1 h after methamphetamine administration. In addition, in norepinephrine-depleted animals, the clearance of striatal methamphetamine is prolonged, although the striatal concentration peak observed at 1 h is unmodified. These findings, together with the lack of a methamphetamine enhancement when DSP-4 was injected 12 h after methamphetamine administration, suggest that in norepinephrine-depleted animals, a more pronounced acute neuronal sensitivity to methamphetamine occurs.  相似文献   

9.
This paper reviews the organization of the avian and mammalian striatum. The striatum receives input from virtually the entire rostrocaudal and mediolateral expanse of the cerebral cortex. The corticostriatal projections appear to be glutamatergic, forming excitatory synapses in the striatum. Another major projection to the avian striatum that also appears to be glutamatergic stems from a set of nuclei in the dorsal zone of the avian thalamus that are comparable to the mammalian intralaminar, mediodorsal, and midline nuclei. Furthermore, the striatum receives a massive projection from dopaminergic neurons of the ventral tegmental area and substantia nigra in the midbrain tegmentum. In return, the midbrain tegmentum receives a direct GABAergic/substance P-ergic/ dynorphinergic projection from the striatum, as well as an indirect one formed by GABAergic/substance P-ergic/ dynorphinergic and GABA-ergic/enkephalinergic striatal neurons projecting to the pallidum in the first step, and pallidal GABAergic/LANT6/parvalbumin neurons projecting to the midbrain tegmentum in the second step. In addition to its projection neurons, the striatum possesses GABAergic and cholinergic interneurons. One motor output pathway of the striatum runs via the pallidum and dorsal thalamic ventral tier nulei to the motor cortex. In addition to this pathway, birds possess a major descending pathway from the basal ganglia to the tectum via the GABAergic nucleus spiriformis lateralis in the pretectum. On hodological and topological grounds, similar nuclei, although not GABAergic, can be found in mammals. Finally, an other striatal motor output is formed by a sequential GABAergic pathway from the basal ganglia via the substantia nigra to the tectum. In conclusion, it appears that the organization of the avian and mammalian basal ganglia is similar rather than different.  相似文献   

10.
The physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.  相似文献   

11.
Chronic administration of morphine or cocaine affects opioid gene expression. To better understand the possible existence of common neuronal pathways shared by different classes of drugs of abuse, we studied the effects of methamphetamine on the gene expression of the opioid precursor prodynorphin and on the levels of peptide dynorphin A in the rat brain. Acute (6 mg/kg, intraperitoneally, i.p.) and chronic (6 mg/kg, i.p. for 15 days) methamphetamine markedly raised prodynorphin mRNA levels in the hypothalamus, whereas no effect was observed in the hippocampus. Dynorphin A levels increased after chronic treatment in the hypothalamus and in the striatum, whereas no significant changes were detected after acute treatment. These results indicate that methamphetamine affects prodynorphin gene expression in the hypothalamus, which may be an important site (also for its relevant neuroendocrine correlates) for opioidergic mechanisms activated by addictive drugs.  相似文献   

12.
The effect of acute and chronic administration of methamphetamine (METH) on the levels of activity-regulated cytoskeleton-associated protein (arc), an effector-immediate early gene, mRNA has been investigated in rat brain using in situ hybridization. Levels of arc mRNAs in the brain regions examined increased significantly from 0.5-1 h after an acute METH (4 mg/kg) administration compared with basal levels. The increase in arc mRNA continued by 3 h, and then subsided to basal levels by 6 h. The degree of increase in arc mRNA and the peak time after METH administration varied according to brain area. Arc mRNA in cerebral cortices showed robust increase 1 h after METH administration. In the striatum and hippocampus, it showed earlier and later increase, respectively, and its degree of both was less than in the cortices. Microscopic examination revealed that the METH-induced arc mRNAs in the parietal cortex were enriched in layers IV and VI, and those in the striatum existed mainly in the medium-sized neuron. Pretreatment with either 0.5 mg/kg SCH23390 or 0.25 mg/kg MK-801 almost completely blocked the enhanced striatal arc mRNA levels induced by acute METH administration, whereas such pretreatments only partially reduced the effect of METH in the cerebral cortical regions. In the chronic treatment experiment, the arc mRNA levels of the group that received chronic treatment with METH followed by a METH challenge showed an increase like seen after acute METH administration. Since previous studies proposed that arc is one of cytoskeleton-associated proteins and is selectively localized in neural dendrites, the results of the present study suggested that arc may play an important role in the synaptic plasticity underlying METH-induced adaptational changes including behavioral sensitization.  相似文献   

13.
Uric acid is a well-known natural antioxidant present in fluids and tissues throughout the body. Oxyradical production and cellular calcium overload are believed to contribute to the damage and death of neurons that occurs following cerebral ischemia in victims of stroke. We now report that uric acid protects cultured rat hippocampal neurons against cell death induced by insults relevant to the pathogenesis of cerebral ischemia, including exposure to the excitatory amino acid glutamate and the metabolic poison cyanide. Confocal laser scanning microscope analyses showed that uric acid suppresses the accumulation of reactive oxygen species (hydrogen peroxide and peroxynitrite), and lipid peroxidation, associated with each insult. Mitochondrial function was compromised by the excitotoxic and metabolic insults, and was preserved in neurons treated with uric acid. Delayed elevations of intracellular free calcium levels induced by glutamate and cyanide were significantly attenuated in neurons treated with uric acid. These data demonstrate a neuroprotective action of uric acid that involves suppression of oxyradical accumulation, stabilization of calcium homeostasis, and preservation of mitochondrial function. Administration of uric acid to adult rats either 24 hr prior to middle cerebral artery occlusion (62.5 mg uric acid/kg, intraperitoneally) or 1 hr following reperfusion (16 mg uric acid/kg, intravenously) resulted in a highly significant reduction in ischemic damage to cerebral cortex and striatum, and improved behavioral outcome. These findings support a central role for oxyradicals in excitotoxic and ischemic neuronal injury, and suggest a potential therapeutic use for uric acid in ischemic stroke and related neurodegenerative conditions.  相似文献   

14.
BACKGROUND: Glucocorticoids have been reported to aggravate ischemic brain damage. Because changes in the activities of various neuronal systems are closely related to the outcome of ischemic damage, the authors evaluated the effects of dexamethasone on the monoaminergic systems and ischemic neuronal damage. METHODS: The right middle cerebral artery was occluded for 2 h, and the tissue concentrations of monoamines and their metabolites were determined in the cerebral cortex and the striatum of rats. The turnover of 5-hydroxytryptamine was compared in animals injected with saline and those injected with dexamethasone twice (2 mg/kg in each injection) by evaluating the probenecid-induced accumulation of 5-hydroxyindoleacetic acid. The turnovers of norepinephrine and dopamine were estimated from the alpha-methyl-p-tyrosine-induced depletion of norepinephrine and dopamine, respectively. The effect of dexamethasone on the infarct volume was evaluated by triphenyltetrazolium chloride stain in rats subjected to 2 h of occlusion. RESULTS: Dexamethasone did not affect the cortical 5-hydroxytryptamine or 5-hydroxyindoleacetic acid contents. However, it suppressed the turnover of the cortical 5-hydroxytryptamine on both sides. Dexamethasone reduced the turnover of the striatal 5-hydroxytryptamine and facilitated the dopamine turnover. In rats subjected to 2 h of occlusion and 2 h of reperfusion, the infarct volume was 10.5 times greater in the group that received dexamethasone than in the animals that received saline. CONCLUSIONS: Dexamethasone suppresses the inhibitory serotonergic system and facilitates the excitatory dopaminergic system in the rat telencephalon. This may be a mechanism by which dexamethasone aggravates ischemic neuronal injury.  相似文献   

15.
Atypical antipsychotic drugs, such as clozapine, are distinguished from classical antipsychotics (e.g. haloperidol) by their lower liability for producing motor side-effects. Although initial studies suggested that the clinical efficacy of antipsychotic drugs is related to their affinity for the D2 dopamine receptor, the delayed onset of both the therapeutic effects and the extrapyramidal symptoms associated with these drugs implicates a more complex mechanism of action. In this study, we found that continuous (but not acute) treatment of rats with either drug caused an increase in dye coupling between neurons in the limbic component of the rat striatal complex (i.e. the shell region of the nucleus accumbens) after withdrawal of the drugs. Furthermore, continuous treatment with haloperidol, but not clozapine, also increased dye coupling in the motor-related part of the striatal complex (i.e. the dorsal striatum). Thus, both therapeutically effective drugs show a delayed effect on dye coupling between neurons in the accumbens shell, whereas only the drug associated with motor side effects altered coupling between cells in the dorsal striatum. Antipsychotic drugs may therefore alleviate the profound disturbances in cognitive function of schizophrenics by producing sustained alterations in the way signals from the cortex are integrated within these brain regions.  相似文献   

16.
Preischemic hyperglycemia or superimposed hypercapnia exaggerates brain damage caused by transient forebrain ischemia. Because high regional levels of brain-derived neurotrophic factor (BDNF) protein correlate with resistance to ischemic damage, we studied the expression of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, hyperglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA in dentate granule cells was attenuated and that in CA3 pyramidal neurons completely prevented in hyperglycemic rats. No ischemia-induced increases of BDNF mRNA levels in the hippocampal formation were detected in hypercapnic animals. Hyperglycemic and hypercapnic rats showed transiently decreased expression of BDNF mRNA levels in the cingulate cortex, which was not observed in normoglycemic animals. The results suggest that suppression of the BDNF gene might contribute to the increased vulnerability of the CA3 region and cingulate cortex in hyperglycemic and hypercapnic animals.  相似文献   

17.
Based on successful induction of donor-specific unresponsiveness by alloantigenic stimulation in several animal models of acute rejection, we hypothesized that similar immune manipulations would also inhibit the evolution of chronic rejection and transplant vasculopathy. To induce immune tolerance, DA rats received a PVG heart allograft and were immunosuppressed with cyclosporine for 30 d. At day 100 the animals were challenged with a PVG aortic allograft after either 1 or 18 h of cold ischemia. 8 wk after the aortic transplantation, the grafts were investigated for morphological changes, infiltrating cells, apoptosis, and Fas-Fas ligand expression. Control allografts showed advanced transplant arteriosclerosis, whereas tolerance-induced aortic allografts displayed reduced neointimal formation, less medial atrophy, fewer apoptotic cells, and fewer Fas- and FasL-expressing cells. Prolonged ischemic storage time did not profoundly alter the morphological changes of the allografts. Fas expression was found in T cells, macrophages, vascular smooth muscle cells, and endothelial cells, whereas FasL was expressed mainly by T cells and macrophages. FasL mRNA expression was evident throughout the entire allograft wall. In conclusion, induction of allospecific tolerance can effectively prevent transplant arteriosclerosis. Cold ischemia damage does not abrogate the beneficial effect of tolerance, but creates a separate identity of mainly endothelial lesions. Furthermore, Fas-mediated apoptosis appears to be involved in the pathological lesions seen in chronic rejection.  相似文献   

18.
Methamphetamine and methcathinone are psychostimulant drugs with high potential for abuse. In animals, methamphetamine and related drugs are known to damage brain dopamine (DA) neurons, and this damage has recently been shown to be detectable in living nonhuman primates by means of positron emission tomography (PET) with [11C]WIN-35,428, a DA transporter (DAT) ligand. The present studies determined whether living humans with a history of methamphetamine or methcathinone abuse showed evidence of lasting decrements in brain DAT density. PET studies were performed in 10 control subjects, six abstinent methamphetamine users, four abstinent methcathinone users, and three patients with Parkinson's disease (PD). On average, subjects had abstained from amphetamine use for approximately 3 years. Before PET studies, all subjects underwent urine and blood toxicology screens to rule out recent drug use. Compared with controls, abstinent methamphetamine and methcathinone users had significant decreases in DAT density in the caudate nucleus (-23 and -24%, respectively) and putamen (-25 and -16%, respectively). Larger decreases in DAT density were evident in patients with PD (47 and 68% in caudate and putamen, respectively). Neither methamphetamine nor methcathinone users showed clinical signs of parkinsonism. Persistent reductions of DAT density in methamphetamine and methcathinone users are suggestive of loss of DAT or loss of DA terminals and raise the possibility that as these individuals age, they may be at increased risk for the development of parkinsonism or neuropsychiatric conditions in which brain DA neurons have been implicated.  相似文献   

19.
20.
Repetitive cerebral ischemia produces more severe damage than a similar single duration insult. We have previously shown that, in gerbils, damage in the substantia nigra reticulata (SNr) is seen with repetitive insults rather than a single insult. We have also shown that there is a progressive decrease in the extracellular GABA in the striatum in the days preceding such damage, speculating that a loss of GABA may be in part responsible for this damage. This study evaluates the GABA levels in the SNr in animals exposed to repetitive ischemic insults. Each animal received a total of three ischemic insults of 3-min duration at hourly intervals. In vivo microdialysis was carried out to analyze the GABA and glutamate dialysate levels on Days 1, 3, 5, 7, and 14 following the ischemic insult. In the control and treated (ischemic) animals, there was a significant increase in the GABA levels with the introduction of nipecotic acid on Days 1, 3, 5, and 14. However, on Day 7 there was a significant attenuation in the GABA response to nipecotic acid in the treated animals in comparison to the controls. The glutamate levels in the treated animals were similar to the control animals on Days 1, 3, 5, and 7. However, on Day 14 the glutamate levels were significantly lower than on previous days. Our experiments for the first time measure extracellular glutamate and GABA responses in the SNr in animals exposed to repetitive ischemic insults. Our experiments show that there is a significant decrease in the GABA concentrations at a time when ischemic damage is developing in this region. This confirms our hypothesis that a decrease in GABA may be one factor contributing to neuronal damage during the period following repetitive ischemic insults. Further, the rebound increase in GABA levels on Day 14 with a concomitant fall in glutamate levels would indicate that reparative processes are still active in the 2 weeks following the insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号