首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A process has been developed for the preparation of extrapure WO suitable for crystal growth. The method involves thermal decomposition of ammonium paratungstate (APT) powder at 230–250° C, resulting in the formation of soluble ammonium metatungstate (AMT). The AMT solution is then purified and hydrolyzed. The resultant purified APT is converted to WO3. The reaction yield is at a level of 95%. The contents of metallic impurities, especially those of polyvalent impurities (Fe, Mn, Cu, Pb, V, Cr, and others), capable of influencing the optical properties of crystals, was comparable to their detection limit: 10?6 to 10?5 wt %. The purification process was tested using a pilot-scale system. The purity was confirmed by the synthesis of high-quality CdWO4 crystals.  相似文献   

2.
Among different type of transition metal oxides, tungsten trioxide (WO3) is a suitable candidate for electronic device fabrication due to its n-type property and wide band gap. Herein, one-dimensional tungsten trioxide (WO3) nanorods were achieved from an aqueous solution of sodium tungstate dihydrate (Na2WO4·2H2O) and sodium chloride (NaCl) in an acidic media by a time-optimized hydrothermal synthesis in autoclave at 180°C or different synthesis durations. For studying morphology and size of obtained powder, X-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM) were applied. Finally, WO3 nanorods of about 2–3 μm in length and 100–200 nm in diameter were obtained during 3 h hydrothermal process.  相似文献   

3.
Step-wise thermal dehydration of WO3·2H2O has been investigated and the various hydrated tungsten trioxide phases characterized. A cubic phase of tungsten trioxide with 0·36 moles of water is obtained by heating WO3·2H2O to 498 K.  相似文献   

4.
Tungsten, because of its high strength and high melting point occupies a prime position amongst metals. With depletion of high grade resources considerable R and D work is still being carried out in tungsten producing countries around the world for the processing of low grade and secondary resources. The paper gives a brief review of the hydrometallurgical processes developed to recover tungsten from low grade concentrates. The R and D work carried out on purification and recovery of tungsten as tungstic oxide/ammonium paratungstate (APT) from a number of off-grade products such as table concentrate (WO3=66%, SiO2=2·2%, S=1·8%), middlings (18–20% WO3, and 28–30% S) and jig concentrate (4·6% WO3) are discussed in this paper. It has been found that more than 75% of silica and 90% of sulphur could be removed from the table concentrate by curing with hydrofluoric acid and subsequent roasting of the desilicated product at 650°C. In the case of middlings, it was possible to recover over 90% of tungsten as tungstic oxide by an oxidative roast followed by pressure leaching with soda. A detailed study on the low grade jig concentrate to recover tungsten as APT, showed that over 90% extraction was possible by adopting the pressure leaching-solvent extraction route. Effect of parameters such as soda concentration, time, temperature and pressure during leaching; as well as extraction and stripping behaviour of tungsten from leach solution at different pH and aqueous to organic ratio during solvent extraction with Alamine-336, were studied and a flow-sheet was developed for processing of jig concentrate analysing 4·6% WO3.  相似文献   

5.
Microstructural and electrical properties of sintered tungsten trioxide   总被引:4,自引:0,他引:4  
Tungsten trioxide sintered wafers were prepared from WO3 powder obtained when ammonium paratungstate is decomposed in air at moderate temperature. Two wafer series of five samples were sintered under the same conditions in the temperature range 600–1000 °C. One of these wafers series was submitted to a subsequent annealing at 700 °C under a hydrogen atmosphere. All samples were characterized at room temperature by X-ray diffraction and electrical measurements. X-ray spectra show that WO3 ceramic presents a mixture of the triclinic and monoclinic phases before the reduction process. After the reduction process, WO2 and four hydrogen tungsten bronze phases are present in wafers. Capacitance measurements showed that the samples submitted only to the sintering process changed the dielectric constant with the frequency according to the Debye model. The reduced WO3 shows a semiconductor behavior, as determined by electrical resistivity measurements.  相似文献   

6.
The electrical transport properties of nanocrystalline tungsten trioxides (WO3) under high pressures have been investigated by various electrical measurements up to 36.5 GPa. The discontinuous changes in direct-current resistivity under high pressures result from two electronic phase transitions at 4.3 and 10.5 GPa and two structural phase transitions at 24.8 and 31.6 GPa. Hall-effect measurement shows that the nanocrystalline WO3 is n-type semiconductor within the whole investigated pressure range. The carrier concentration decreases monotonously with increasing pressure, but mobility increases first and then decreases at 10.4 GPa. Through alternate-current impedance measurement, it can be found that the variation of the ratio of grain boundary resistance to grain resistance synchronizes with that of the mobility under high pressures, indicating that the grain boundary plays more important role in the carrier transport process of nanocrystalline WO3. The discontinuous changes of resistance and relaxation frequency of grain and grain boundary also provide the evidence for electronic phase transitions.  相似文献   

7.
Silver nanowire (Ag NW) transparent conductive electrodes with high conductivity and optical transmittance are fabricated. Then, WO3 films are deposited on Ag NW electrodes by an electrochemical deposition method. The WO3/Ag NW films act as obvious optical modulators in the visible region. More importantly, the WO3/Ag NW films have distinct advantage on NIR modulation over conventional WO3/ITO electrode. Meanwhile, the WO3/Ag NW films own high electrochromic efficiency of 86.9 cm2 C?1 at NIR region of 1100 nm. Furthermore, electrochromic devices (ECDs) based on Ag NW substrates are fabricated in this study, which exhibit excellent cycling stability and distinct modulation of near-infrared light compared with ITO-based ECDs. This work is the first study that reports the application of Ag NW-based electrochromic films and electrochromic devices in modulation of NIR light. It exhibits bright prospects that the electrochromic materials deposited on Ag NW electrodes may find potential application in thermal control and emission detectors for spacecraft.  相似文献   

8.
Thermal analysis results indicate that the liquidus surface of the Li2WO4-WO3-Li2B4O7 system consists of the primary phase fields of Li2WO4, Li2B4O7, WO3, Li2WO4 · WO3 (congruent melting), 3Li2WO4 · 2Li2B4O7 (congruent melting), and Li2WO4 · 3WO3 (incongruent melting). Low-melting-point compositions are selected that are potentially attractive for the low-temperature synthesis of lithium tungsten bronze powders.  相似文献   

9.
A uniform WO3 nanowire structure was prepared by two-step thermal oxidation method on Si substrate. WO3 nanowires show different morphology and crystal structures after annealing at different temperatures. The influence of annealing temperature on WO3 nanowires was investigated by SEM, TEM and XRD. Higher crystallization property and lower surface state was obtained with higher annealing temperature. The gas sensing properties of the WO3 nanowires with various annealing temperatures to NO2 with the concentration ranging from 1 to 4 ppm were examined at different temperatures ranging from room temperature to 200 °C. The results indicate that WO3 nanowires can greatly lower the working temperature of sensors and sensors based on WO3 nanowires show p-type or n-type sensing behaviors depending on annealing temperatures. Possible sensing mechanism of p-type WO3 nanowires and the influence of annealing temperature on sensing types was explained. This work might supply new ideas about gas sensing mechanisms and open a new way to develop p-type WO3 sensing materials.  相似文献   

10.
Monoclinic tungsten oxide (WO3) nanorods were grown using the hydrothermal method on a seeded W foil. The seed layer was formed by thermal oxidation of W foil at 400°C for 30 min. Cetyltrimethylammonium bromide (CTAB) or hexamethylamine (HMT) was used in the reactive hydrothermal bath, along with sodium tungstate dihydrate (Na2WO4.2H2O) and hydrochloric acid (HCl). The concentration of CTAB was varied from 0.01 M to 0.07 M and the concentration of HMT was varied from 0.01 M and 0.05 M. The result showed that CTAB-assisted hydrothermal reaction produced WO3 nanorods with 4–7 nm diameter, and provided that CTAB concentration was less than 0.07 M. WO3 nanorods could not be obtained when CTAB concentration was 0.07 M. Columnar structured WO3 was produced with the presence of HMT in the hydrothermal bath. This was due to decomposition of HMT to form hydroxyl ions (OH?) that inhibited the growth of nanorods. Cyclic voltammetry (CV) analysis showed better electrochromic property of WO3 nanorods compared to columnar structured WO3.  相似文献   

11.
Tungsten trioxide particles in high yield were prepared via a simple solid evaporation route with ammonium paratungstate hydrate as precursor and Ar gas as carrier gas. Detailed characterization by scanning electron microscopy has shown that increasing carrier gas flow rate promotes morphological evolution from large and irregular semi-spherical particles to non-agglomerated quasi-spherical particles, and finally to single-crystalline nanoparticles with an average diameter of 60 nm. The adsorption activity of the tungsten trioxide particles is size-dependent and increased with decreasing particle size. The present method could readily produce large-scale tungsten trioxide nanoparticles with ideal adsorption performance, and can be utilized to fabrication of various semiconductor oxides with advanced properties.  相似文献   

12.
The thermoelectric properties of tungsten trioxide (WO3) ceramics doped with nickel oxide (NiO) were investigated from 323 up to 1,023 K. The results revealed that doping WO3 with NiO could promote the grain growth and the density. There was a second phase (NiWO4) segregation at the grain boundaries in the samples containing more than 1.0 mol% NiO, which inhibited the further grain growth. The magnitude of the electrical conductivity (σ) and the absolute value of the Seebeck coefficient (|S|) depended strongly on the NiO content. As for the power factor (σS 2 ), the 1.0 mol% sample has the maximum value of the power factor which is 0.55 μW m?1 K?2 at 1,023 K.  相似文献   

13.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

14.
Lead tungstate films have been grown on silicon by magnetron sputtering followed by heat treatment at various temperatures. The thermal oxidation of metal-oxide (Pb/WO3/Si and W/PbO2/Si) and metal-metal (Pb/W/Si) bilayer systems at temperatures above 870 K yields films that are dominated by monoclinic PbWO4 and contain WO3, also monoclinic. The optimal configuration for PbWO4 synthesis is Pb/WO3/Si because, even during lead deposition onto tungsten oxide, we observe the formation of lead tungstate, PbWO4, and subsequent heat treatment increases the percentage of this phase in the film.  相似文献   

15.
The sol of silane and WO3 was prepared from tetraethyl orthosilicate (TEOS) and methacryloxy-propyl-trimethoxy silane (KH570) with a novel route as described in previous work, and the aqueous WO3 solution was prepared from ammonium tungstate. These two sols were mixed by stirring for about 1 hour with a certain ratio. Through sol-gel method, the transparent hybrids coating of organic silane and tungsten oxide was prepared by spraying or dipping on the glass substrates, and then were heat-treated at a certain temperature. The photochromic properties were investigated. AFM was used to investigate the surface structure of the prepared coatings. The crystalline phase was studied through X-ray diffraction. UV lights with different wavelengths were used to get the coloration of the film. The results show that silane-WO3 film exhibits better photo-chromic properties under UV light irradiation.  相似文献   

16.
The structures and morphologies of various commercial forms of ammonium paratungstate have been studied and related to the processes used for the production of this material. High temperature crystallization processes are shown to produce the monoclinic pentahydrate 5(NH4)2O.12WO3.5H2O which yields a cuboid or equiaxed monoclinic powder morphology. Crystallization at room temperature produces the orthorhombic undecahydrate 5(NH4)20.12WO3.11H2O which has a lath-like particle morphology. Freeze-dried ammonium paratungstate is shown to be amorphous in nature, to have a chemical composition approaching that of the undecahydrate, and to have a porous, multiparticulate agglomerate particle morphology. The apparent densities of the samples of ammonium paratungstate are explained in terms of the particle morphologies.  相似文献   

17.
WO3-doped zinc titanate ceramics were prepared by conventional mixed-oxide method combined with a chemical processing. The effects of WO3 addition on the low-temperature sintering behavior, phase transition and dielectric properties of zinc titanate ceramics were investigated. The results show that the densification temperature of ZnTiO3 ceramics can be reduced from 1150 to 900 °C with WO3 addition and chemical processing. Small amount of WO3 (<1.00wt %) accelerated the decomposition of hexagonal ZnTiO3 phase to cubic Zn2TiO4 phase, while excessive addition (for example, 3.00wt %) restrained the decomposition. At the same time, the phase transition temperature from hexagonal ZnTiO3 phase to cubic Zn2TiO4 is lowered by adding WO3. WO3 addition affects the dielectric properties of ceramics. The dielectric properties of WO3-doped zinc titanate ceramics were measured at different frequencies. The results showed the decreasing tendency with the increasing measuring frequencies for both the dielectric constants and the loss tangents, and there existed the best dielectric properties for 1.0% WO3-doped ceramics.  相似文献   

18.
WO3/TiO2 nanotube array electrode was fabricated by incorporating WO3 with TiO2 nanotube array via a wet impregnation method using ammonium tungstate as the precursor. TiO2 and WO3/TiO2 nanotube arrays were characterized by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. In order to characterize the photoelectrochemical properties of WO3/TiO2 electrode, electrochemical impedance spectroscopy, and steady-state photocurrent (i ss) measurement at a controlled potential were performed in the supporting electrolyte containing different concentrations of glucose. The photoelectrochemical characterization results reveal that WO3/TiO2 nanotube array electrode possesses a much higher separation efficiency of the photogenerated electron–hole pairs and could generate more photoholes on the electrode surface compared with the pure TiO2 nanotube array electrode. The i ss for glucose oxidation at WO3/TiO2 nanotube array electrode is much higher than that at the pure TiO2 nanotube array electrode.  相似文献   

19.
Phase formation stages of MgWO4 and ZnWO4 (precursor compositions for following steps) were investigated by monitoring the reactions of oxide chemicals at various temperatures. Developed phases were examined by using X-ray diffraction (XRD). Successive attempts were also conducted for Pb(Mg1/2W1/2)O3 (PMW) and Pb(Zn1/2W1/2)O3 (PZW) by reacting PbO with the precursor compounds. Stages of phase development in the two compositions were also analyzed. The results are compared with those of another tungsten-containing perovskite Pb(Fe2/3W1/3)O3 (PFW) and its B-site precursor Fe2WO6. After PbO addition to the precursor powders, a perovskite phase formed directly (i.e., without any intermediate phases) in the case of PMW. For PbO + ½ZnWO4, in contrast, the decomposition of ZnWO4 and preferential reaction with PbO resulted in Pb2WO5 and ZnO, instead of the perovskite PZW.  相似文献   

20.
《Materials Research Bulletin》2006,41(8):1476-1486
Polyol mediated synthesis for the preparation of tungsten trioxide and titanium doped tungsten trioxide has been reported. The reaction was carried out using chlorides of tungsten and titanium in diethylene glycol medium and water as the reagent for hydrolysis at 190 °C. Formation of a blue coloured dimensionally stable suspension of the precursor materials was observed during the course of the reaction. The particle sizes of the precursor materials were observed to be around 100 nm. The precursor materials were annealed to give tungsten trioxide and titanium doped tungsten trioxide. The precursor materials were characterised using TGA/DTA, FT-IR, optical spectra, SEM, TEM and powder XRD methods. It was observed that the doping of titanium could be effected at least up to 10% of Ti in WO3. The TGA/DTA studies indicated that WO3−x·H2O is the dominant material that formed during the polyol mediated synthesis. The XRD data of the annealed samples revealed that the crystalline phase could be manipulated by varying the extent of titanium doping in the tungsten trioxide matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号