首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrophoretic deposition process has been applied to produce unique carbon nanotube (CNT)/copper nanostructures on the carbon fiber surfaces. During the deposition process, ionized copper and positively charged CNTs are accelerated towards the carbon fiber under applied electric fields. An interconnected formicary-like network of nanotubes and nanoparticles is formed where copper nucleation and growth occurs predominantly at nanotube crossing and edge-contact locations. When embedded in a structural composite the CNT/copper structures create a highly conductive and strongly bonded network shown by significant enhancements in both electrical conductivity and interlaminar shear strength as compared to composites without the CNT/copper nanostructures.  相似文献   

2.
Unidirectional carbon/carbon composites are modeled as fiber composites with cylindrically orthotropic fibers and matrix. All of the thermoelastic properties and the conductivities are evaluated on the basis of the composite cylinder assemblage (CCA) and the generalized self consistent scheme (GSCS) models. The former for axisymmetric elastic properties, axial shear modulus, thermal expansion coefficients and conductivities; the latter for transverse shear and Young's moduli and Poisson's ratio. Numerical results are given for onion skin, radial and transversely isotropic phase graphitic structures.  相似文献   

3.
张策  徐志伟  郭兴峰 《复合材料学报》2018,35(11):2994-3000
为了提高复合材料的界面性能,采用微波等离子体(MPECVD)方法,通过控制工艺参数,在碳纤维(CF)表面生长结构形貌各异的纳米碳,将其引入CF/环氧树脂(EP)复合材料界面微区。采用FESEM研究了不同MPECVD工艺参数对沉积纳米碳结构形貌的影响,采用单纤维破碎实验研究了纳米碳形貌对CF/EP复合材料的界面性能影响,探讨了纳米碳-CF/EP复合材料界面微观结构与其界面性能之间的关系。结果表明:随着MPECVD沉积功率的变化,沉积的纳米碳结构形貌变化较大。当沉积功率为700 W时,制备得到的多尺度纳米碳-CF/EP复合材料界面性能最高,界面剪切强度(IFSS)达到112.38 MPa,提高了118.85%。  相似文献   

4.
采用碳纳米管电泳沉积到碳纤维表面,达到改性碳纤维复合材料界面性能的目的.将羧基化的碳纳米管在十六烷基三甲基溴化铵的分散作用下制备成不同浓度的水溶液,在电场作用下,将碳纳米管电泳沉积到碳纤维表面.通过扫描电子显微镜、X-射线光电子能谱以及动态接触角对处理前后的碳纤维的表面形貌、表面元素及浸润性进行表征.研究结果表明,经过电泳沉积碳纳米管后,碳纤维的表面粗糙度、表面极性官能团含量及表面能都有较大提高,纤维的浸润性得到提高.对复合材料的界面性能分析表明,复合材料的界面性能在经过处理后有很大提高,当碳纳米管的质量浓度为0.1%,界面剪切强度提高了72.93%.  相似文献   

5.
The ablation properties and thermal conductivity of carbon nanotube (CNT) and carbon fiber (CF)/phenolic composites were evaluated for different filler types and structures. It was found that the mechanical and thermal properties of phenolic-polymer matrix composites were improved significantly by the addition of carbon materials as reinforcement. The concentrations of CF and CNT reinforcing materials used in this study were 30 vol% and 0.5 wt%, respectively. The thermal conductivity and thermal diffusion of the different composites were observed during ablation testing, using an oxygen–kerosene (1:1) flame torch. The thermal conductivity of CF mat/phenolic composites was higher than that of random CF/phenolic composites. Both CF mat and CNT/phenolic composites exhibited much better thermal conductivity and ablation properties than did neat phenolic resin. The more conductive carbon materials significantly enhanced the heat conduction and dissipation from the flame location, thereby minimizing local thermal damage.  相似文献   

6.
《Composites Part A》2002,33(2):243-251
The ablation, mechanical and thermal properties of vapor grown carbon fiber (VGCF) (Pyrograf III™ Applied Sciences, Inc.)/phenolic resin (SC-1008, Borden Chemical, Inc.) composites were evaluated to determine the potential of using this material in solid rocket motor nozzles. Composite specimens with varying VGCF loadings (30–50% wt.) including one sample with ex-rayon carbon fiber plies were prepared and exposed to a plasma torch for 20 s with a heat flux of 16.5 MW/m2 at approximately 1650°C. Low erosion rates and little char formation were observed, confirming that these materials were promising for rocket motor nozzle materials. When fiber loadings increased, mechanical properties and ablative properties improved. The VGCF composites had low thermal conductivities (approximately 0.56 W/m-K) indicating they were good insulating materials. If a 65% fiber loading in VGCF composite could be achieved, then ablative properties are projected to be comparable to or better than the composite material currently used on the Space Shuttle Reusable Solid Rocket Motor (RSRM).  相似文献   

7.
To enhance the ionic conductivity in solid phase polyelectrolyte systems for lithium ion battery applications demands effective control of the phase properties. Here, we report on a strategy involving a layer-by-layer methodology of two polyelectrolytes, poly(ethylene oxide) (PEO) and poly(acrylic) acid (PAA) and carboxylic acid functionalized multi-walled carbon nanotubes (MWNTs). Optimization of the assembly strategy revealed that undoped and lithium-ion doped stacking of four layers provides excellent film growth and improvement of the ionic conductivity of up to 10− 5 S cm− 1, which exceeds conventional assemblies of lithium-ion doped [PEO/PAA] by up to two orders of magnitude. Although ionic conductivity was most effectively enhanced for ultrathin films (< 100 nm), [PEO/PAA/PEO/(PAA + MWNT)] stacking still provides an ionic conductivity of > 10− 6 S cm− 1 for thick films (> 2 μm). The improvement of ionic conductivity was attributed to (i) interfacial phase mixing (blending) of the two polyelectrolytes, (ii) the MWNT contribution in the interfacial region, and (iii) the preferential adsorption of lithium-ions along the carbon nanotubes. This study involved a series of scanning probe methods including lateral force microscopy, and electrostatic force microscopy.  相似文献   

8.
For modification, silicon carbide nanofibers (SiCNFs) are uniformly dispersed on the fiber surface of the unidirectional carbon preform. The modified unidirectional carbon preform was then densified to obtain SiCNF–C/C composites by chemical vapor deposition (CVD). The microstructure of SiCNF–C/C composites was investigated. The mechanical properties and thermal conductivity of the modified composites were analyzed as well. Results show that PyC preferentially deposits on the surface of SiCNFs with high degree of order. The interface between carbon fibers and matrix has high texture, resulting in a good bonding between them. The mechanical properties of C/C composites are adjusted. After modification, the fracture mode is changed and the flexural strength is enhanced, especially in vertical direction. The thermal conductivity of modified composites is also enhanced in both vertical and parallel directions.  相似文献   

9.
ZrW2O8/Cu composites were prepared by the powder metallurgy method. Electroless plating was used to deposit copper on ZrW2O8 powder before sintering. The thermal expansion and thermal conductivity of composites were measured in the temperature range from 25 oC to 200 oC and compared with those predicted from various theoretical models. The results show that the coefficient of thermal expansion of ZrW2O8/ Cu composites with a different volume fraction of ZrW2O8 is greater than the theoretically calculated value. The thermal conductivities of ZrW2O8/ Cu composites increase with a higher copper content and decrease upon elevated temperature. The thermal conductivity of composites with a different volume fraction of ZrW2O8 is lower than the theoretically calculated value.  相似文献   

10.
高导热炭纤维及其炭基复合材料   总被引:11,自引:2,他引:11  
主要介绍了国际上近十年来高导热炭纤维(CF)及其炭基复合材料发展的新动向。  相似文献   

11.
Composites of polyindole (PIn), a conducting polymer, with carboxylated-multiwalled carbon nanotubes (c-MWCNT/PIn) were synthesized; the synthesis was done using (i) two miscible solvents (in-situ method) and (ii) two immiscible solvents (interfacial method). A tubular composite, with a uniform coating of the polymer over c-MWCNTs, was observed in the case of interfacial synthesis. However, the in-situ synthesis of c-MWCNT/PIn composites exhibited a densely packed spherical morphology, with c-MWCNT incorporated within the polymer spheres. The spherical morphology was probably obtained due to fast polymerization kinetics and the formation of micelles in case of in-situ polymerization, whereas tubular morphology was obtained in case of interfacial polymerization due to the sufficient time provided for the growth of polymer chains over the c-MWCNT surfaces. Nanoscale electrical properties of composites, in a metal/(c-MWCNT/PIn) configuration, were studied using current sensing atomic force microscopy. Interfacial c-MWCNT/PIn composite, on Al metal substrate, exhibited a typical rectifying diode behavior. This composite had manifested enormous potential for electronic applications and fabrication of nanoscale organic devices.  相似文献   

12.
刘科  钟志成  曹静 《功能材料》2020,(1):1160-1164
柔性超级电容器作为一种储能器件,具有功率密度高、充电时间短、循环寿命长、比电容高等优点,可满足可穿戴器件的需求,而柔性电极材料是决定柔性超级电容器发展的关键因素,它决定着电容器的主要性能指标。采用混纺的方法制备了碳纤维含量为20%(质量分数)的碳纤维/棉纤维混纺纱线,然后通过电化学沉积法在碳纤维/棉纤维混纺纱线上生长聚吡咯颗粒,成功制备了20%(质量分数)碳纤维/棉纤维/聚吡咯柔性复合材料。利用扫描电子显微镜、拉曼光谱分析仪和电化学工作站研究了复合材料的形貌、聚吡咯沉积情况以及复合材料的电容性能。结果表明,20%(质量分数)碳纤维/棉纤维/聚吡咯柔性复合材料中,聚吡咯颗粒直径为30~60 nm,且沉积均匀,化学活性较高;在1.02 mA/cm^2电流密度下,复合材料的最大比电容达到1.28 F/cm^2,其高比电容归因于电极的独特结构;复合材料具有良好的柔韧性、机械稳定性和充放电循环寿命,其经过6000次弯曲循环后,电容保持率仍有80%以上,可以用作柔性可穿戴超级电容器的电极材料。  相似文献   

13.
《Composites Science and Technology》2006,66(11-12):1703-1712
In this paper, a theoretical model has been developed for predicting the effective thermal conductivity of an aligned multi-walled nanotube polymer composite. This model is based on an effective medium theory that has been developed for composites containing aligned spheroidal inclusions with imperfect interfaces. To incorporate the nanotube structure into this theory, a continuum model of the nanotube geometry is developed by considering its structure and the mechanism of heat conduction through it. Results show that the overall conductivity will be much lower than expected due to the fact that in the composite, the outer nanotube layer carries the bulk of the heat flowing through the nanotube. It is also seen that the high nanotube–matrix boundary resistance does not significantly affect the overall conductivity. The effective conductivity was also found to be highly sensitive to the nanotube diameter.  相似文献   

14.
以油胺为分散稳定剂,在石蜡中热分解甲酸铜-碳纳米管复合物前驱体,单步制备了纳米铜修饰多壁碳纳米管(Cu-MWCNTs)/石蜡复合材料。通过XRD、TEM和DSC对Cu-MWCNTs/石蜡复合材料的物相、微观形貌及相变行为进行了表征和分析,并对其热敏性、热膨胀性和热稳定性及影响因素进行了分析研究。结果表明:纳米Cu原位沉积在MWCNTs外壁上,粒径为2~35nm。与纯石蜡相比,Cu-MWCNTs/石蜡复合材料的相变温度和相变潜热均明显降低。Cu-MWCNTs含量为0.2wt%的Cu-MWCNTs/石蜡复合材料具有较短的升温时间,体膨胀率降低较小,且多次加热后稳定性较好,可作为此类热敏微驱动器的理想材料。  相似文献   

15.
对比研究了热塑性层间增韧和碳纳米管(CNT)膜层间混杂碳纤维(CF)/双马来酰亚胺复合材料不同层间结构调控方法,分析了其复合材料的压缩、动态力学、导电和电磁屏蔽等性能的变化.结果表明,热密实可显著降低层间CNT膜的厚度,抑制其局部富树脂程度,CNT膜-CF混杂复合材料的压缩强度得以提升,其压缩断口形貌明显不同于初始的C...  相似文献   

16.
冯满 《功能材料》2022,53(5):5213-5217
以正硅酸乙酯(TEOS)为前驱体,无水乙醇和去离子水为溶剂,采用溶胶-凝胶法制备了SiO2气凝胶,再以不同含量(0,1%,3%和5%(质量分数))短切碳纤维为增强材料,在胶凝完成后,经过表面改性,采用常压干燥工艺,制备了碳纤维增强SiO2气凝胶复合材料。采用XRD、SEM、FT-IR和孔径测试等方法对制备所得复合材料的微观结构、形貌、孔径分布和导热性能进行了测试分析。结果表明,碳纤维增强SiO2气凝胶复合材料为典型的非晶态结构,属于毛细凝聚特征的介孔材料,碳纤维的掺杂并没有改变SiO2气凝胶的晶态结构;未掺杂碳纤维的SiO2气凝胶的颗粒相互堆搭,掺入碳纤维的SiO2气凝胶颗粒的孔隙明显减小,孔洞结构较为完整,碳纤维的掺入填充了大尺寸孔隙,有助于气凝胶孔径分布区间的收窄,当碳纤维的含量为3%(质量分数)时,颗粒分布最佳;随着碳纤维含量的增加,复合材料的导热系数呈现出先降低后升高的趋势,当碳纤维的含量为3%(质量分数)时,样品的导热系数最低为0.019 W/(...  相似文献   

17.
Carbon nanotubes were effectively incorporated into low-viscosity polyester/vinyl ester resins and then used for infusion of glass fiber textiles by high-pressure injection, resulting in carbon nanotubes/glass fiber/polymer multiscale composites. The nanotubes distribution in the composites was examined by measuring the local density of as-produced composites. The uniformity of local density and scanning electron microscope characterization verified the homogeneous morphology of as-produced composites. Both theoretical calculation and experimental characterization indicated thermal conductivity was significantly improved. Incorporation of 3 wt% carbon nanotubes has resulted in 1.5-folds enhancement of thermal conductivity. These results will further increase industrial application of the fiber composites.  相似文献   

18.
Copper/diamond (Cu/D) composites are known for their applications in thermal management systems. This paper investigates the effect of interfacial thermal resistance (TR) upon the effective thermal conductivity of Cu/D composites through experimental and numerical means. The composite samples were made using uncoated, Cu-coated, and Cr-coated diamond particles. The transient plane source method was used to measure the thermal conductivity of the composite samples, while the micrographs of the specimens were used to develop the finite element models. Together with the experimental and numerical results, the interfacial TR was identified in each sample. Although Hasselman–Johnson model calculated the conductivity values with significant error, the trend shown by experimental results is still followed. The finite element model, however, led to an error of less than 1%. The numerical analysis showed that the TR depends not only upon the diamond volume fraction but also upon the coating material. Finally, it has been demonstrated that numerical simulation may be employed to reveal the appropriate combinations of diamond fraction and the coating material in order to attain the desired level of effective thermal conductivity.  相似文献   

19.
Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA–PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.  相似文献   

20.
以双马来酰亚胺树脂(BMI)为树脂基体,二烯丙基双酚A(DABA)为增韧剂,γ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)表面改性的SiC颗粒-SiC晶须(SiCP-SiCW)为复配导热填料,浇注成型制备SiC_P-SiC_W/BMI导热复合材料,分析研究SiC形状、用量、质量比及表面改性对SiC_P-SiC_W/BMI导热复合材料的导热性能、介电性能、力学性能和热性能的影响。结果表明,当改性SiC_P-SiC_W用量为40wt%且SiC_P∶SiC_W质量比为1∶3时,SiC_P-SiC_W/BMI导热复合材料具有最佳的综合性能,导热系数λ为1.125W(m·K)~(-1),介电常数ε为4.12,5%热失重温度为427℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号