首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review of anode materials development in solid oxide fuel cells   总被引:3,自引:0,他引:3  
High temperature solid oxide fuel cell (SOFC) has prospect and potential to generate electricity from fossil fuels with high efficiency and very low greenhouse gas emissions as compared to traditional thermal power plants. In the last 10 years, there has been significant progress in the materials development and stack technologies in SOFC. The objective of this paper is to review the development of anode materials in SOFC from the viewpoint of materials microstructure and performance associated with the fabrication and optimization processes. Latest development and achievement in the Ni/Y2O3-ZrO2 (Ni/YSZ) cermet anodes, alternative and conducting oxide anodes and anode-supported substrate materials are presented. Challenges and research trends based on the fundamental understanding of the materials science and engineering for the anode development for the commercially viable SOFC technologies are discussed.  相似文献   

2.
Ceria-based materials for solid oxide fuel cells   总被引:6,自引:0,他引:6  
This paper is focused on the comparative analysis of data on electronic and ionic conduction in gadolinia-doped ceria (CGO) ceramics as well as on the electrochemical properties of various oxide electrodes in contact with ceria-based solid electrolytes. Properties of electrode materials, having thermal expansion compatible with that of doped ceria, are briefly reviewed. At temperatures below 1000 K, Ce0.90Gd0.10O2– (CGO10) was found to possess a better stability at reduced oxygen pressures than Ce0.80Gd0.20O2– (CGO20). Incorporation of small amounts of praseodymium oxide into Ce0.80Gd0.20O2– leads to a slight improvement of the stability of CGO20 at intermediate temperatures, but the difference between electrolytic domain boundaries of the Pr-doped material and CGO10 is insignificant. Since interaction of ceria-based ceramis with electrode materials, such as lanthanum-strontium manganites, may result in the formation of low-conductive layers at the electrode/electrolyte interface, optimization of electrode fabrication conditions is needed. A good electrochemical activity in contact with CGO20 electrolyte was pointed out for electrodes of perovskite-type La0.8Sr0.2Fe0.8Co0.2O3– and LaFe0.5Ni0.5O3–, and LaCoO3–/La2Zr2O7 composites; surface modification of the electrode layers with praseodymium oxide results in considerable decrease of cathodic overpotentials. Using highly-dispersed ceria for the activation of SOFC anodes significantly improves the fuel cell performance.  相似文献   

3.
Solid oxide fuel cells (SOFC) are emerging as an alternate source of energy. Anodes form one of the components of the fuel cells. Ni/Yttrium stabilized zirconia is a classic anode material for SOFC when hydrogen is used as the fuel source, but it is not that effective when methane is used as fuel source due to carbon deposition on the anode. Recently, copper stabilized zirconia has been investigated as anode material for SOFC for its self-cleaning properties. We have tried to investigate phases in copper stabilized zirconia for better understanding of its properties. Copper stabilized zirconia (CSZ) with different CuO loading was prepared by the solid-state reaction method. X-ray diffraction studies on these samples reveal only monoclinic zirconia phase in those samples loaded with less than 5 mol% of CuO. Traces of monoclinic CuO along with monoclinic ZrO2 is observed in the samples when loading of CuO is between 5 and 20 mol%. Orthorhombic copper zirconium oxide and monoclinic zirconia phases were observed when CuO loading was greater than 20 mol%. Scanning and back-scattered electron micrographs reveal a clear two-phase structure only in the samples with greater than 20 mol% of CuO loading. Atomic force microscopy carried out on 33 mol% loaded zirconia shows a three-phase structure with flattened seven-fold-coordination of Zr4+ with oxygen.  相似文献   

4.
固体氧化物燃料电池(SOFCs)是一类可以将燃料气体的化学能以高效而环境友好的方式直接转化为电能的电化学反应器。最近的研究趋势是发展可以直接电化学氧化碳氢化合物燃料(如天然气)的电池,但是使用碳氢化合物作为燃料时,目前最常使用的镍-氧化钇稳定的氧化锆(Ni/YSZ)金属陶瓷阳极材料具有易积碳和硫中毒的缺点。因此,研究在燃料气氛下具有混合离子-电子电导的替代阳极材料显得尤为必要。综述了以碳基燃料工作的SOFCs阳极材料研究的一些进展,并展望本领域在未来的发展趋势。  相似文献   

5.
Electrophoretic deposition of electrolyte materials for solid oxide fuel cells, including La0.8Sr0.2Ga0.875Mg0.125O3–x , yttria stabilized zirconia and (Ce0.8Gd0.2)O1.9, was studied under various experimental conditions. The use of phosphate ester as a dispersant and poly (vinyl butyral) as a binder enabled high deposition rate and formation of crack-free, adherent deposits. Electrodeposition rates were quantified in experiments performed at constant current and constant voltage modes from suspensions in ethanol, isopropanol and mixed ethanol—isopropanol solvents. The microstructure of as prepared and sintered deposits was studied by electron microscopy. The bath composition was optimized to enable formation of dense deposits.  相似文献   

6.
Solid-oxide fuel cells (SOFCs) technology has a substantial potential in the application of clean and efficient electric power generation. However, the widespread utilization of SOFCs has not been realized because the cost associated with cell fabrication, materials and maintenance is still too high. To increase its competitiveness, lowering the operation temperature to the intermediate range of around 500-800 °C is one of the main goals in current SOFCs research. A major challenge is the development of cell materials with acceptably low ohmic and polarization losses to maintain sufficiently high electrochemical activity at reduced temperatures. During the past few decades, tremendous progress has been made in the development of cell materials and stack design, which have been recently reviewed. SOFCs are fabricated from ceramic or cermet powders. The performances of SOFCs are also closely related to the ways in which the cell materials are processed. Therefore, the optimization of synthetic processes for such materials is of great importance. The conventional solid-phase reaction method of synthesizing SOFCs materials requires high calcination and sintering temperatures, which worsen their microstructure, consequently, their electrochemical properties. Various wet chemical routes have recently been developed to synthesize submicro- to nano-sized oxide powders. This paper provides a comprehensive review on the advanced synthesis of materials for intermediate-temperature SOFCs and their impact on fuel cell performance. Combustion, co-precipitation, hydrothermal, sol-gel and polymeric-complexing processes are thoroughly reviewed. In addition, the parameters relevant to each synthesis process are compared and discussed. The effect of different processes on the electrochemical performance of the materials is evaluated and optimization of the synthesis processes is discussed and some emerging synthetic techniques are also briefly presented.  相似文献   

7.
Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) cermet anode was fabricated for solid oxide fuel cells (SOFCs) by conventional ceramic processing using NiO-YSZ composite particles. Microstructures of the anode were carefully characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ni-YSZ cermet anode was consisting of fine YSZ connections, as the conducting pass of oxygen ions, on the surface of Ni network, as that of electrons, with continuous pore structure and as that of gaseous species. No amorphous phases were present at the interface between Ni and YSZ, and there was an orientation relationship between Ni and YSZ grains, (111)Ni//(111)YSZ. The cermet anode showed a high electrical performance at 800 °C. These results indicated that the electrochemical activity of the Ni-YSZ cermet anode was enhanced with the present microstructure.  相似文献   

8.
钙钛矿型中低温固体氧化物燃料电池阴极材料研究进展   总被引:4,自引:0,他引:4  
中低温固体氧化物燃料电池的研制是固体氧化物燃料电池商业化的必然趋势,阴极材料的研制是影响其发展的关键问题之一.本文综述了近年来固体氧化物燃料电池ABO3型钙钛矿阴极材料的研究情况,并提出了其发展方向.  相似文献   

9.
During the past 18 months developments in ceramics for solid oxide fuel cells have resulted in considerable lowering of the operating temperature of such devices from 1000°C to below 800°C without loss of performance. This has been achieved by the introduction of alternative materials for the cell components with improved conductivity characteristics or by reducing the thickness of critical cell components. In addition, optimisation of electrode microstructures has resulted in reduced polarisation losses over the cell interfaces, allowing better electrochemical performance.  相似文献   

10.
The performance of advanced functional materials for fuel cell applications are closely linked to the material composition and morphology at the micro and nano-scales. 3D characterization techniques that can provide bulk information at these fine scales are therefore essential for microstructure optimization of these materials. Here, the X-ray nano-holotomography technique is used to image various multi-phase and absorbing solid oxide fuel cell electrodes. Different porous structures for typical commercial cells and innovative electrode designs obtained using a freeze-casting process are studied. Taking advantage of the geometrical setup and the use of high energy X-rays, both large reconstructions (field of view: 150 µm) and local tomography at higher resolution (field of view: 50 µm) can be performed on the same sample to have a multi-scale approach. This produces highly representative sample volumes with a size/resolution ratio that allows the geometric and physical properties of the materials to be calculated, e.g., connectivity of each phase, mean particles diameters, specific surface area, particle size distributions, tortuosity factors, and densities of triple boundary lengths.  相似文献   

11.
能源危机和环境污染是全世界在可持续发展道路中所面临的难题。固体氧化物燃料电池(SOFC)具有高能量转化效率和低污染排放,被认为是未来能源经济的基石。其中,以质子导体作为电解质的固体氧化物燃料电池(H-SOFC)由于具有高燃料利用率、高理论电动势、高离子迁移数以及低传导活化能,因而备受关注。然而,与氧离子导体固体氧化物燃料电池(O-SOFC)相比,H-SOFC的材料选择和理论体系还处于初级阶段,尤其是H-SOFC的阴极。在H-SOFC中,氢气在阳极被氧化,形成质子,通过电解质迁移到阴极,而后与氧进行电极反应生成水,其阴极的电极过程比O-SOFC更为复杂。寻找高性能的阴极材料和探索H-SOFC中的阴极反应机理,对于H-SOFC的发展具有重要的意义。围绕质子导体阴极材料的发展进行深入调研,着重阐述和总结了不同传导类型的阴极材料的电化学行为及其反应模型,为H-SOFC阴极材料的发展和应用提供了一种思路。  相似文献   

12.
Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.  相似文献   

13.
Abstract

High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400–700 °C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.  相似文献   

14.
Oxide-ion conducting ceramics for solid oxide fuel cells   总被引:4,自引:0,他引:4  
Realization of a solid oxide fuel cell (SOFC) operating at 700°C on a hydrocarbon fuel or gaseous H2 is an outstanding technical target. For the past 25 years, efforts to achieve this goal have been based on yttria-stabilized zirconia as the electrolyte, a NiO + electrolyte composite as the anode, a porous La0.85Sr0.15MnO3 (LSM) metallic perovskite as the cathode, and a La1–x Sr x CrO3 ceramic as the interconnect material. This paper reviews progress in our laboratory on an alternate approach that would use a Sr- and Mg- doped LaGaO3 perovskite as the electrolyte, a Sm-doped ceria (SDC) as the anode or as a buffer layer with a NiO + SDC composite as the anode, a mixed oxide-ion/electronic conductor (MIEC) as the cathode, and a stainless steel as the metallic interconnect.  相似文献   

15.
Functionally graded Solid Oxide Fuel Cell cathodes have been prepared from mixtures of strontium doped lanthanum manganite (LSM) and yttria stabilised zirconia (YSZ) using screen printing techniques. Samples were characterised using scanning electron microscopy, elemental dot mapping, and electrochemical impedance spectroscopy. Characterisation using AC impedance techniques showed that each cathode could be analysed in terms of a low frequency, mid frequency and high frequency response. Results showed that as the level of YSZ-LSM grading within the cathode increased, the polarisation resistance decreased. No region of the graded cathode should contain less than 20 wt% LSM to prevent an accompanying increase in series resistance.  相似文献   

16.
Materials for lower temperature solid oxide fuel cells   总被引:5,自引:0,他引:5  
The solid oxide fuel cell (SOFC) continues to show great promise for the generation of electricity for an increasing range of applications. The present SOFC technology is based on an all-ceramic design, which eliminates the corrosion problems associated with fuel cells containing liquid electrolytes. To obtain good electrochemical performance with the currently used materials, this all-ceramic fuel cell operates at 1000°C. Despite a significant amount of research and several successful demonstrations at the 100 kW level, commercialisation of the technology is not as rapid as anticipated. This is, in part, due to the high operating temperatures required, necessitating the use of expensive materials. As a result of these problems, there has been an effort over the past few years to lower the SOFC operating temperature. This paper will address the issues concerning the development of new materials that can operate at lower temperatures. Many of these issues have been or are being addressed in the research performed at Argonne National Laboratory, and some recent results will be discussed.  相似文献   

17.
固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。低温化是SOFC的主要发展方向。探索适合在低温(400~600℃)条件下操作的高性能电解质材料是SOFC低温化发展的关键。近年来,研究人员发展了新型的复合电解质材料,取得了较好的成果。本文综述了近年来低温SOFC复合电解质材料的研究进展,简要介绍了复合电解质材料的特点、类型和传导机理。  相似文献   

18.
论述了晶体材料,重点是固体氧化物燃料电池组件的导电机理,介绍了影响电导率的几个因素。针对不同的电解质和电极材料,讨论了几种常用的测量电解质和电极总电导率、电子电导率以及离子电导率的方法,并指出在测量中需要注意的问题。  相似文献   

19.
主要对碳基固体氧化物燃料电池(SOFC)中三传二反的控制方程、不同尺度的不同物理场理论模型以及碳基燃料的重整、催化和硫化等方面进行概括总结。SOFC有可使用氢气、一氧化碳、甲烷和其他的碳氢化合物作为燃料进行电化学反应的燃料灵活性,但使用碳氢燃料需要解决诸如碳基燃料的重整、电极的催化、积碳和硫化等问题。电池内部反应气体的物质输运、电荷输运、能量输运、动量输运和化学及电化学反应状态均可以用偏微分方程来描述。运用这些电化学反应和输运的偏微分方程,结合材料的微观性质,可以建立SOFC的多尺度多物理场模型。通过理论模型研究材料微结构与性质、工作条件、几何构型等参数对电池性能的影响,对SOFC材料组成与电池堆结构进行定量分析和优化设计,可以加速SOFC技术的更快发展。  相似文献   

20.
Solid oxide fuel cells (SOFCs) are high temperature fuel cells, which are being developed for large scale and distributed power systems. SOFCs promise to provide cleaner, more efficient electricity than traditional fossil fuel burning power plants. Research over the last decade has improved the design and materials used in SOFCs to increase their performance and stability for long-term operation; however, there are still challenges for SOFC researchers to overcome before SOFCs can be considered competitive with traditional fossil fuel burning and renewable power systems. In particular degradation due to contaminants in the fuel and oxidant stream is a major challenge facing SOFCs. In this paper we discuss ongoing computational and experimental research into different degradation and design issues in SOFC electrodes. We focus on contaminants in gasified coal which cause electrochemical and structural degradation in the anode, and chromium poisoning which affects the electrochemistry of the cathode. Due to the complex microstructures and multi-physics of SOFCs, multi-scale computational modeling and experimental research is needed to understand the detailed physics behind different degradation mechanisms, the local conditions within the cell which facilitate degradation, and its effects on the overall SOFC performance. We will discuss computational modeling research of SOFCs at the macro-, meso- and nano-scales which is being used to investigate the performance and degradation of SOFCs. We will also discuss the need for a multi-scale modeling framework of SOFCs, and the application of computational and multi-scale modeling to several degradation issues in SOFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号