共查询到20条相似文献,搜索用时 0 毫秒
1.
Nasrollah Najibi Ilkhechi Mohammad Reza Akbarpour Rezvan Yavari Zahra Azar 《Journal of Materials Science: Materials in Electronics》2017,28(22):16658-16664
Sn4+ and La3+ co-doped TiO2 photocatalytic material with nanoparticle structure have been successfully prepared using SnCl2·2H2O and La(NO3)3·6H2O as precursors. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy and UV–visible spectroscopy have been used to for the characterization of the morphology, crystal structure, particle size and optical properties of the samples. The photocatalytic properties of sample with various amount of La doped TiO2 have been studied by photo degradation of methyl orange (MO) in water under visible light. XRD patterns showed both rutile and anatase phases for 5 mol% of Sn and 5–10 mol% of La. But anatase phase with a little rutile phase was formed for 5 mol%Sn and 10 mol%La. The prepared Sn and La co doped TiO2 photo-catalyst showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of MO solution under visible irradiation. Antibacterial behavior towards E. coli was then studied under visible irradiation. The synthesized T-5%Sn-10%La powder exhibited superior antibacterial activity under visible irradiation compared to the pure TiO2. 相似文献
2.
Jingnan Song Maojun Zheng Xiaoliang Yuan Qiang Li Faze Wang Liguo Ma Yuxiu You Shaohua Liu Pengjie Liu Dongkai Jiang Li Ma Wenzhong Shen 《Journal of Materials Science》2017,52(12):6976-6986
We report a facile electrochemical reduction method to synthesize Ti3+-self-doped TiO2 nanotube arrays (TNTs), where the effects of reduction duration and potential on the photoelectrochemical performance were systematically investigated. The X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra confirmed the presence of Ti3+ in the TNTs. Under the optimum reduction condition, the Ti3+-self-doped TNTs exhibited remarkably enhanced photocurrent density and photoconversion efficiency, which were nearly 3.1 and 1.75 times that of pristine TNTs, respectively. The enhancement of PEC performance is due to the improved electrical conductivity, accelerated charge transfer rate at the TNTs/electrolyte interface, as well as the improved visible light response, which is elucidated by electrochemical impedance spectra, Mott–Schottky, and UV–Vis diffuse reflection spectra. 相似文献
3.
Jinzhang Gao Shengying Li Wu Yang Gang Ni Lili Bo 《Journal of Materials Science》2007,42(9):3190-3196
A convenient method for synthesizing highly photocatalytic activity PANI/TiO2–Fe3+ nanocomposite was developed. The effect of calcination temperature on the phase composition of TiO2 nanopowder was investigated. It was found that higher temperature could promote the formation of rutile phase. The nanocomposite
was characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and
X-ray diffraction (XRD). The results indicated that the nanohybrid was composed of TiO2, Fe3+ and PANI. The photocatalytic property of the nanocomposite was evaluated by the degradation of methyl orange. In the presence
of this catalyst, the degradation rate of methyl orange of 95.2% and 70.3% could be obtained under the UV and sunlight irradiation
within 30 min, respectively. The apparent rate constant was 5.64 × 10−2 which is better than that of the Degussa P25. 相似文献
4.
We have synthesized materials based on a silver titanium phosphate with partial substitution of tri-, tetra-, or pentavalent
cations for titanium: Ag1±x
Ti2−x
M
x
(PO4)3 (M = Nb5+, Ga3+) and AgTi2−x
Zr
x
(PO4)3. The materials have been characterized by X-ray diffraction and impedance spectroscopy and have been shown to have small
thermal expansion coefficients. Their ionic conductivity has been determined. Silver ions in these materials are difficult
to replace with protons. 相似文献
5.
Xiao-Yu Sun Zheng He Xuan Gu 《Journal of Materials Science: Materials in Electronics》2018,29(20):17217-17221
Zn2GeO4, Zn2GeO4:Mn2+, Zn2GeO4:Pr3+ and Zn2GeO4:Mn2+/Pr3+ phosphors were fabricated by a solid state reaction. The phase and luminescent properties of the fabricated phosphors were investigated. The XRD patterns show that all of the fabricated phosphors have an orthorhombic structure. The fabricated Zn2GeO4 shows an emission band in the range of 350–550 nm. The fabricated Zn2GeO4:Mn2+ and Zn2GeO4:Pr3+ phosphors show emission bands corresponding to Mn2+ and Pr3+ ions, respectively. The fabricated Zn2GeO4:Mn2+/Pr3+ phosphor shows the emission band results from Mn2+ and the codoped Pr3+ enhances the emission intensity of Mn2+. Moreover, Zn2GeO4:Mn2+/Pr3+ phosphor exhibits longer decay time than that of Zn2GeO4:Mn2+. The higher intensity and longer lifetime of Mn2+ emission are induced by the energy transfer from Pr3+ of various vacancies to Mn2+ in Zn2GeO4:Mn2+/Pr3+ phosphors. 相似文献
6.
TiO<Subscript>2</Subscript> nanocrystals grown on graphene as advanced photocatalytic hybrid materials 总被引:2,自引:0,他引:2
Yongye Liang Hailiang Wang Hernan Sanchez Casalongue Zhuo Chen Hongjie Dai 《Nano Research》2010,3(10):701-705
A graphene/TiO2 nanocrystals hybrid has been successfully prepared by directly growing TiO2 nanocrystals on graphene oxide (GO) sheets. The direct growth of the nanocrystals on GO sheets was achieved by a two-step method, in which TiO2 was first coated on GO sheets by hydrolysis and crystallized into anatase nanocrystals by hydrothermal treatment in the second step. Slow hydrolysis induced by the use of EtOH/H2O mixed solvent and addition of H2SO4 facilitates the selective growth of TiO2 on GO and suppresses growth of free TiO2 in solution. The method offers easy access to the GO/TiO2 nanocrystals hybrid with a uniform coating and strong interactions between TiO2 and the underlying GO sheets. The strong coupling gives advanced hybrid materials with various applications including photocatalysis. The prepared graphene/TiO2 nanocrystals hybrid has superior photocatalytic activity to other TiO2 materials in the degradation of rhodamine B, showing an impressive three-fold photocatalytic enhancement over P25. It is expected that the hybrid material could also be promising for various other applications including lithium ion batteries, where strong electrical coupling to TiO2 nanoparticles is essential. 相似文献
7.
Lei Yu Jigong Hao Zhijun Xu Wei Li Ruiqing Chu 《Journal of Materials Science: Materials in Electronics》2017,28(8):5840-5845
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor. 相似文献
8.
S. M. Levshov I. V. Berezovskaya N. P. Efryushina B. I. Zadneprovskii V. P. Dotsenko 《Inorganic Materials》2011,47(3):285-289
We have studied the luminescence spectra of Li2Sr1 − x
Eu
x
SiO4 (x = 0.0001–0.01) solid solutions prepared by solid-state reactions and a sol-gel process in a reducing atmosphere. The spectra
show a broad band in the range 500–700 nm, centered at 578 nm, which is due to the 4f
65d → 4f
7 transition. The luminescence excitation spectrum shows, in addition to bands due to Eu2+ 4f
7 → 4f
65d transitions, a strong band centered at 174 nm, attributable to absorption in the SiO44− group. 相似文献
9.
Yan-Hua Song Hai-Feng Zou Shu-Cai Gan Yue-Feng Deng Guang-Yan Hong Jian Meng 《Journal of Materials Science》2007,42(13):4899-4904
A red long lasting phosphor Zn3(PO4)2:Mn2+,Ga3+ (ZPMG) was prepared by ceramic method, and phase conversion and spectral properties were investigated. Results indicated
that the phase conversion from α-Zn3(PO4)2, β-Zn3(PO4)2 toγ-Zn3(PO4)2 occurs with different manganese concentration incorporated and sinter process. The structural change induced by the phase
transformation results in a remarkable difference in the spectral properties. The possible luminescence mechanism for this
red LLP with different forms has been illustrated. 相似文献
10.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87. 相似文献
11.
Haike Ren Fugui Yang 《Journal of Materials Science: Materials in Electronics》2018,29(18):15396-15403
The Mn2+, Yb3+, Er3+: ZnWO4 green phosphors are synthesized successfully through the high temperature solid state reaction method. The micro-structure and morphology have been investigated by means of XRD and EDS. The doped concentrations of Mn2+, Yb3+, Er3+ are measured by ICP. The absorption spectra and emission spectra with different doped concentrations of Mn2+ are presented to reveal the influence of Mn2+ on the green up-conversion performance. Excited with 970 nm LED, the up-conversion emission peak at 547 nm is obtained and the CIE spectra as well as the green light photo are also presented. The results indicate that the Mn2+ ions play the role of the luminescence adjustment in the up-conversion process, which can improve the up-conversion green emission intensity effectively. The luminescence adjustment mechanism of Mn2+ ions in Mn2+, Yb3+, Er3+: ZnWO4 green phosphors has been discussed. The crystal parameters of Dq, B and C are calculated to evaluate the energy level split effect. 相似文献
12.
Single crystals of Bi2WO6 (a layered perovskite-like compound) doped with Ca2+, Pb2+, Sr2+, and Ba2+ on the Bi3+ site are grown, and their oxygen ionic conductivity is measured along the polar axis. The intrinsic conductivity of the doped crystals differs insignificantly from the conductivity of undoped Bi2WO6, indicating that the oxygen ions in the Bi2O2 layers contribute little to the oxygen ionic conductivity of the crystals. The sharp change in the activation energy for conduction at 600°C attests to a transition from one conduction mechanism to another in going from low to high temperatures.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 7, 2005, pp. 863–865.Original Russian Text Copyright © 2005 by Kharitonova, Voronkova, Yanovskii. 相似文献
13.
T. N. Khamaganova T. G. Khumaeva A. K. Subanakov A. V. Perevalov 《Inorganic Materials》2017,53(1):81-85
Polycrystalline samples of undoped, terbium-doped (CdB4O7:Tb3+), and manganese-doped (CdB4O7:Mn2+) cadmium tetraborate have been prepared by solid-state reactions at 850°C. Using differential scanning calorimetry and X-ray diffraction, we have determined the melting point of CdB4O7 (t m = 976°C) and shown that this compound melts incongruently. The observed monotonic decrease in the orthorhombic cell parameters of the doped materials indicates the formation of substitutional solid solutions (sp. gr. Pbca). The thermoluminescence intensity of the doped materials has been shown to depend on the nature and concentration of the activators and the irradiation time. 相似文献
14.
Zhen Liu Yang Feng Dongmei Jiao Na Zhang Huan Jiao 《Journal of Materials Science》2008,43(5):1619-1623
Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge. 相似文献
15.
The luminescent properties of CdI2, CdI2:Pb2+, CdI2:Mn2+, and CdI2:Pb2+,Mn2+) crystals have been studied at temperatures from 85 to 295 K under optical and x-ray excitation. Analysis of new and earlier spectroscopic data suggests that the 560-nm luminescence of CdI2:Pb2+ and CdI2:(Pb2+,Mn2+) crystals under excitation on the long-wavelength component of the A absorption band of Pb2+ centers is due to Pb2+-bound anion excitons. The 640-to 660-nm emission of these crystals is attributable to α centers. The manganese luminescence in the codoped material originates from both intracenter Mn2+ excitations and a sensitized process due to energy transfer from the host and Pb2+-related centers. The mechanisms of recombination and energy transfer processes in cadmium iodide crystals codoped with Pb2+ and Mn2+ are discussed. 相似文献
16.
Synthesis,structural characterization,and photocatalytic properties of iron-doped TiO<Subscript>2</Subscript> aerogels 总被引:1,自引:0,他引:1
M. Popa L. Diamandescu F. Vasiliu C. M. Teodorescu V. Cosoveanu M. Baia M. Feder L. Baia V. Danciu 《Journal of Materials Science》2009,44(2):358-364
Fe(III)-doped TiO2 aerogels are prepared by acid catalyzed sol–gel method followed by supercritical drying, and then heat treatment. Raman spectra together with X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of the iron-doped TiO2 aerogel samples revealed the existence of both anatase and brookite crystalline phases. It was found that the brookite phase formation is favored by the increase of the iron content in the dried samples. XRD measurements show that the lattice constant c of anatase phase decreases with the dopant addition, while the value of a remains essentially unchanged. The microstructure of the investigated samples is relatively compact with small mesopores as revealed from transmission electron microscopy (TEM). The most enhanced photocatalytic activity was exhibited by the TiO2 aerogel sample with 1.8 at.% Fe(III) whose apparent rate constant of the salicylic acid photodegradation was found to be of almost six times higher than that of Degussa P25. 相似文献
17.
B. V. Slobodin A. V. Ishchenko R. F. Samigullina B. V. Shul’gin M. A. Melkozerova E. V. Zabolotskaya 《Inorganic Materials》2012,48(5):520-524
We have developed a procedure for thermally stimulated synthesis of a cesium strontium metavanadate, Cs2Sr(VO3)4:Mn2+ (0.01, 0.50, 1.00, 5.00 at % Mn2+), using MnO-containing starting mixtures. The EPR spectrum of the material containing 0.01 at % Mn2+ shows a hyperfine structure due to the incorporation of a small amount of manganese into the diamagnetic double metavanadate host. The luminescent and optical properties of Cs2Sr(VO3)4:Mn2+ depend on manganese content. In contrast to higher doping levels, doping with 0.01 at % Mn2+ increases the integrated emission intensity of the vanadate by 10% and improves its chromaticity characteristics (approaching them to those of white light). We assume that this is due to the reduction in the density of vacancy-type growth defects, such as oxygen vacancies. 相似文献
18.
S. Sailaja S. J. Dhoble Nameeta Brahme B. Sudhakar Reddy 《Journal of Materials Science》2012,47(5):2359-2364
Novel green nanophosphors Ca2Gd2W3O14: Tb3+ were synthesized by solid state reaction method. From the X-ray diffraction profiles it is observed that Tb3+: Ca2Gd2W3O14 phosphors were crystallized in the form of tetragonal structure. The scanning electron microscopy (SEM) image shows that
the particle size is at around 300 nm. In addition to these the prepared powder phosphors were also examined by the energy
dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and mechanoluminescence
(ML) spectra. Emission spectra of Tb3+: Ca2Gd2W3O14 nanophosphors have shown bright green emission at 545 nm (5D4 → 7F5) with an excitation wavelength λexci = 374 nm (7F6 → 5G6). ML spectra shows the radiation effect on the Ca2Gd2W3O14: Tb3+ nanophosphors and from that it was observed that these phosphors are very less sensitive for lower exposure. 相似文献
19.
G. V. Tikhonov 《Radiochemistry》2009,51(3):256-261
The effect of the synthesis conditions on the properties of inorganic laser-active liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ is considered. The kinetic dependences of the U(IV) content and decay time of the Nd3+ luminescence in POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions for various synthesis procedures at 380 K have been obtained. In POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions, nonradiative energy transfer Nd3+ → U4+ is observed, and quenching of the Nd3+ luminescence is described by the Stern-Volmer law: k q = (6.4 ± 0.6) × 105 l mol?1 s?1. Laser liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ with neodymium concentration of up to 0.7 M, uranyl concentration of up to 0.1 M, and decay time of the Nd3+ luminescence of up to 220 μs have been prepared for the first time. 相似文献
20.
Lingzhan Kong Xiuzhen Xiao Jun Yu Dongsen Mao Guanzhong Lu 《Journal of Materials Science》2017,52(11):6310-6321
The Sm3+, Dy3+ doped and Sm3+/Dy3+ co-doped NaLa(MoO4)2 spherical phosphors were hydrothermally synthesized by the EDTA-2Na mediated method. Under the excitation of 297 nm, the quenching concentration of Sm3+ in NaLa(MoO4)2 host was determined to be 13%, and the concentration quenching mechanism was discussed to be the electric quadrupole–quadrupole interaction. After Sm3+ and Dy3+ ions were co-doped into the NaLa(MoO4)2 host, the energy transfer behaviors resulted from Dy3+ to Sm3+ ions were investigated by the help of the luminescent spectra of the obtained phosphors. By varying co-doping concentrations of Sm3+/Dy3+ ions, the emission color of NaLa(MoO4)2:Sm3+/Dy3+ can be tuned from reddish-orange, pink and white to bluish-green. The CIE chromaticity coordinate, the correlated color temperature and the quantum efficiency of NaLa0.87(MoO4)2:1%Sm3+, 12%Dy3+ were calculated to be (0.356, 0.320), 4353 K and 20%, respectively. Furthermore, in the temperature-dependent analysis, it presented good thermal stability, which can become a promising single-phased white-emitting phosphor for white LEDs devices. Based on these results, the possible energy transfer mechanism between Dy3+ and Sm3+ in NaLa(MoO4)2:Sm3+/Dy3+ was also proposed. 相似文献