首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene nanoplatelet (GNP) was incorporated into poly(vinylidene fluoride) (PVDF) and PVDF/poly(methyl methacrylate) (PMMA) blend to achieve binary and ternary nanocomposites. GNP was more randomly dispersed in binary composites compared with ternary composites. GNP exhibited higher nucleation efficiency for PVDF crystallization in ternary composites than in binary composites. GNP addition induced PVDF crystals with higher stability; however, PMMA imparted opposite effect. The binary composite exhibited lower thermal expansion value than PVDF; the value further declined (up to 28.5% drop) in the ternary composites. The storage modulus of binary and ternary composites increased to 23.1% and 53.9% (at 25 °C), respectively, compared with PVDF. Electrical percolation threshold between 1 phr and 2 phr GNP loading was identified for the two composite systems; the ternary composites exhibited lower electrical resistivity at identical GNP loadings. Rheological data confirmed that the formation of GNP (pseudo)network structure was assisted in the ternary system.  相似文献   

2.
Carbon nanotube/silver (CNT/Ag) nanocomposites include CNT volume fraction up to 10?vol.% were prepared by chemical reduction in solution followed by spark plasma sintering. Multiwalled CNTs underwent surface modifications by acid treatments, the Fourier transform infrared spectroscopy data indicated several functional groups loaded on the CNT surface by acid functionalisation. The acid-treated CNTs were sensitised and activated. Silver was deposited on the surface of the activated CNTs by chemical reduction of alkaline silver nitrate solution at room temperature. The microstructures of the prepared CNT/Ag nanocomposite powders were investigated by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy and X-ray powder diffraction analysis. The results indicated that the produced CNT/Ag nanocomposite powders have coated type morphology. The produced CNT/Ag nanocomposite powders were sintered by spark plasma sintering. It was observed from the microstructure investigations of the sintered materials by HRSEM that the CNTs were distributed in the silver matrix with good homogeneity. The hardness and the tensile properties of the produced CNT/Ag nanocomposites were measured. By increasing the volume fraction of CNTs in the silver matrix, the hardness values increased but the elongation values of the prepared CNT/Ag nanocomposites decreased. In addition, the tensile strength was increased by increasing the CNTs volume fraction up to 7.5?vol.%, but the sample composed of 10?vol.% CNT/Ag was fractured before yielding.  相似文献   

3.
The mechanical and thermo-mechanical properties of polybenzoxazine nanocomposites containing multi-walled carbon nanotubes (MWCNTs) functionalized with surfactant are studied. The results are specifically compared with the corresponding properties of epoxy-based nanocomposites. The CNTs bring about significant improvements in flexural strength, flexural modulus, storage modulus and glass transition temperature, Tg, of CNT/polybenzoxazine nanocomposites at the expense of impact fracture toughness. The surfactant treatment has a beneficial effect on the improvement of these properties, except the impact toughness, through enhanced CNT dispersion and interfacial interaction. The former four properties are in general higher for the CNT/polybenzoxazine nanocomposites than the epoxy counterparts, and vice versa for the impact toughness. The addition of CNTs has an ameliorating effect of lowering the coefficient of thermal expansion (CTE) of polybenzoxazine nanocomposites in both the regions below and above Tg, whereas the reverse is true for the epoxy nanocomposites. This observation has a particular implication of exploiting the CNT/polybenzoxazine nanocomposites in applications requiring low shrinkage and accurate dimensional control.  相似文献   

4.
The single-walled carbon nanotubes (SWNTs) filled nanocomposite SWNT/epoxy resin composite with good uniformity, dispersion and alignment of SWNTs and with different SWNTs concentrations was produced by solution casting technique. Subsequently, the semidried mixture was stretched repeatedly along one direction at a large draw-ratio of 50 for 100 times at ambient atmosphere manually to achieve a good alignment and to promote dispersion of SWNTs in the composite matrix. Composite showed higher electrical conductivities and mechanical properties such as the Young’s modulus and tensile strength along the stretched direction than perpendicular to it, and the electrical property of composite rise with the increase of SWNT concentration. The percolation threshold value of electrical conductivity along the stretching direction is lower than the value perpendicular to the SWNTs orientation. In addition, the anisotropic electric and mechanical properties results, SEM micrograph and the polarized Raman spectra of the SWNT/epoxy composite reveal that SWNTs were well dispersed and aligned in the composites by the repeated stretching process.  相似文献   

5.
Carbon nanotube (CNT) reinforced high-density polyethylene (HDPE) composites were prepared by a melt mixing procedure. The mechanical properties were analyzed using a central composite design where key factors were CNT concentration and sonication temperature during the sample preparation process. The results indicated that the optimum values were 0.8 wt% for the concentration of CNT and 55°C for the sonication temperature. The samples obtained at optimal conditions were systematically studied. Nanoindentation analysis showed an increase of 43% in Vickers hardness of the nanocomposite when compared to pure polymer. The improvement on the mechanical property is related to changes in the thermo-physical and viscoelastic properties of the nanocomposite.  相似文献   

6.
Ultra high molecular weight polyethylene (UHMWPE) is a polymer that is widely used in industrial and orthopaedic applications. In this work, pristine multiwalled carbon nanotubes (MWCNTs) were incorporated into UHMWPE in different concentrations (1, 3 and 5 wt.%) using a ball milling process. UHMWPE/MWCNT nanocomposites were gamma irradiated at 90 kGy to improve the interaction between MWCNTs and the polymer matrix. Structural, thermal and mechanical characterizations were conducted by means of transmission electron microscopy (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and uniaxial tensile techniques. Gamma irradiation produced an increase in the melting temperature, crystallinity and temperature of maximum decomposition rate. The irradiation produced a 38% decrease in the toughness of neat UHMWPE. The incorporation of MWCNTs did not significantly affect the melting point of the neat UHMWPE but decreased the degree of crystallinity of the raw UHMWPE, which was related to a reduction in the UHMWPE lamellar density. An increase in thermal stability was also observed for the nanocomposites compared to neat UHMWPE. The tensile tests showed a 38% increase in the Young’s modulus in the reinforced nanocomposites and a small decrease in toughness (5%). Gamma irradiation of the nanocomposites increased crystallinity, which was related to an increased lamellar thickness, and also improved their thermal stability. The Young’s modulus increased by up to 71% for irradiated nanocomposites and their toughness showed no significant changes in comparison with the non-irradiated nanocomposites. The incorporation of MWCNTs reduced the negative effects of irradiation and compensated for the reduction in toughness. This fact might be attributed to the radical scavenger behaviour of the MWNT as was proved by Electron Spin Resonance (ESR) detection of the radiation-induced radicals.  相似文献   

7.
论述了碳纳米管/聚合物纳米复合材料的各种制备方法和最新进展。详细讨论了碳纳米管/聚合物纳米复合材料的结构和性能,并对今后的研究方向进行了展望。  相似文献   

8.
IrO2 nanocrystals (NCs) were grown on vertically aligned carbon nanotube (CNT) templates, forming IrO2/CNT nanocomposites, by metal organic chemical vapour deposition using (C6H7)(C8H12)Ir as a source reagent. The surface morphology, structural and spectroscopic properties of the nanocomposites were characterized using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman scattering. IrO2 varied from particle- to tube-like NCs as the deposition time increased from 5 to 60 min. The particle-like IrO2 NCs may be used as a protective layer on CNTs, providing stable and uniform field emission application. The tube-like structure may increase the surface-to-volume ratio which makes the IrO2/CNT nanocomposites as an attractive candidate for the supercapacitor application.  相似文献   

9.
Journal of Materials Science - In this work, the electromagnetic interference (EMI) shielding performance of epoxy composites containing barium hexaferrite (BaM) nanoparticles and graphene...  相似文献   

10.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

11.
Carbon nanotubes (CNTs) are promising catalyst supports for fuel cell applications. Metal oxide/CNT nanocomposites are also being studied for dye-sensitized solar-cell, photocatalyst, and sensor applications. The fabrication of nanocomposites consisting of highly crystalline NbOx nanotubes and cup-stacked carbon nanotubes (CSCNTs) is reported herein. The CSCNTs were selected for the carbon materials because of their distinctive structure. The CSCNTs were photochemically treated with vacuum ultraviolet light, which increased the amount of oxygen-containing functional groups therein. NbOx nanotubes with no defects were successfully prepared with the chemical treatment of highly crystalline, layered, flux-grown K4Nb6O17 crystals. First, K4Nb6O17 crystals were grown from a KCl flux at a holding temperature of 800 degrees C. Next, NbOx nanosheets were prepared from the layered K4Nb6O17 crystals via a two-step exfoliation process, which consists of proton exchange in an acid solution and intercalation of the tetrabutylammonium ions. The NbOx nanosheets were rolled up into nanotubes with diameters of about 20 nm and lengths of 100-500 nm on the surfaces of the CSCNTs; thus, unique and complex NbOx/CSCNT nanocomposites were successfully fabricated.  相似文献   

12.
Rubber toughened epoxy/CNT nanocomposites were manufactured at different weight percents between 0 and 1% of multiwall carbon nanotube (MWNT) using a high intensity ultrasonic liquid processor with a titanium probe. Mechanical properties of manufactured dog bone samples were measured in tension and the results indicated a maximum of 23% increase in the elastic modulus at 0.6% by weight of MWNT. However, the fracture strength showed a maximum decrease of about 11% as a function of increasing MWNT loading. Scanning Electron Microscopy (SEM) images from the neat samples revealed a distinct circular pit at the top left edge of the specimen with an overall tearing deformation causing the fracture paths. Comparatively, all nanocomposite samples on an average seemed to show a prominent brittle fracture with little or no evidence of circular pit formation. The amount of tearing deformation seemed to be enhanced in the nanocomposite specimens as compare to the neat ones. Finally, Transmission Electron Microscopy images indicated that different states of dispersion exist in all of the nanocomposite samples. The data showed that agglomeration of nanotubes increases as a function of weight percent. In addition to mechanical property characterization, thermal conductivity of all the samples was determined as a function of temperature between 30 °C and 100 °C using the 3ω method. The tested samples showed an almost 16% increase in thermal conductivity. The minimal enhancement in thermal conductivity has been analyzed from the standpoint of the Effective Medium Theory. Interfacial thermal resistances exhibit no order of magnitude changes explaining the conductivity results.  相似文献   

13.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

14.
15.
Electro-conductive nanocomposites have several applications in biomedical field. Development of a biocompatible electro-conductive polymeric materials is therefore of prime importance. In this study, electro-conductive nanofibrous mats of PLGA/CNT were fabricated through different methods including blend electrospinning, simultaneous PLGA electrospinning and CNT electrospraying and ultrasound-induced adsorption of CNTs on the electrospun PLGA nanofibers. The morphology and diameter of fibers were characterized by SEM and TEM, showing the lowest average diameters of 477?±?136?nm for PLGA/MWCNT blend nanocomposites. MWCNT-sprayed PLGA specimens showed significant lower water contact angle (83°), electrical resistance (3.0?×?104?Ω) and higher mechanical properties (UTS: 5.50?±?0.46?MPa) compared to the untreated PLGA scaffolds. Also, results of PC12 cell study demonstrated highest viability percentage on the MWCNT-sprayed PLGA nanofibers. We propose that the conductive nanocomposites have capability to use as tool for the neural regeneration and biosensors.  相似文献   

16.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

17.
The present study shows the effect of adding CNT to linear low-density polyethylene (LLDPE) to produce LLDPE/CNT nanocomposite fibers. The LLDPE/CNT fibers were produced by melt extrusion process using a twin-screw extruder, in a controlled temperature from 160 °C to 275 °C. Further, melt extrusion process was followed by drawing of fibers at the room temperature. Three different weight percentages, 0.08, 0.3 and 1 wt.% of CNT were studied for producing nanocomposite fibers. The addition of 1 wt.% CNT in the LLDPE fiber has increased the tensile strength by 38% (350 MPa). The addition of 0.08 and 0.3 wt.% CNT in the fiber matrix has improved the ductility by 87% and 122%, respectively. Similarly, improvement in the toughness was observed by 63% and 105% for LLDPE fibers with 0.08 wt.% and 0.3 wt.% CNT respectively. The increase in the mechanical properties of the composite fibers was attributed to the alignment and distribution of CNT in the LLDPE matrix. The dispersion of CNT in the polymeric matrix has been revealed by SEM. The study shows that the small addition of CNT when properly mixed and aligned will increase the mechanical properties of pristine polymer fibers.  相似文献   

18.
Due to their exceptional mechanical properties, carbon nanotubes (CNTs) are considered to be one of the most promising reinforcing materials for the next generation of high-performance nanocomposites. In this study, the reinforcing effect of highly dispersed multiwall carbon nanotubes (MWCNTs) in cement paste matrix has been investigated. The MWCNTs were effectively dispersed in the mixing water by using a simple, one step method utilizing ultrasonic energy and a commercially available surfactant. A detailed study on the effects of MWCNTs concentration and aspect ratio was conducted. The excellent reinforcing capabilities of the MWCNTs are demonstrated by the enhanced fracture resistance properties of the cementitious matrix. Additionally, nanoindentation results suggest that the use of MWCNTs can increase the amount of high stiffness C–S–H and decrease the porosity. Besides the benefits of the reinforcing effect, autogenous shrinkage test results indicate that MWCNTs can also have a beneficial effect on the early strain capacity of the cementitious matrix, improving this way the early age and long term durability of the cementitious nanocomposites.  相似文献   

19.
20.
Self-sensing and interfacial evaluation were investigated with different dispersion solvents for single carbon fiber/carbon nanotube (CNT)-epoxy composites by electro-micromechanical technique and acoustic emission (AE) under loading/subsequent unloading. The optimized dispersion procedure was set up to obtain improved mechanical and electrical properties. Apparent modulus and electrical contact resistivity for CNT-epoxy composites were correlated with different dispersion solvents for CNT. CNT-epoxy composites using good dispersion solvents exhibited a higher apparent modulus because of better stress transferring effects due to the relatively uniform dispersion of CNT in epoxy and enhanced interfacial adhesion between CNT and the epoxy matrix. However, good solvents exhibited a higher apparent modulus but lower thermodynamic work of adhesion, Wa for single carbon microfiber/CNT-epoxy composite. It is attributed to the fact that hydrophobic behavior with high advanced contact angle was observed for CNT-epoxy in the good solvent, which might not be compatible well with the carbon microfiber. Damage sensing was also detected simultaneously using AE combined with electrical resistance measurement. Electrical resistivity increased stepwise with progressing fiber fracture due to the decrease in electrical contact by the CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号