首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen K  Lu G  Chang J  Mao S  Yu K  Cui S  Chen J 《Analytical chemistry》2012,84(9):4057-4062
Fast and accurate detection of aqueous contaminants is of significant importance as these contaminants raise serious risks for human health and the environment. Mercury and its compounds are highly toxic and can cause various illnesses; however, current mercury detectors suffer from several disadvantages, such as slow response, high cost, and lack of portability. Here, we report field-effect transistor (FET) sensors based on thermally reduced graphene oxide (rGO) with thioglycolic acid (TGA) functionalized gold nanoparticles (Au NPs) (or rGO/TGA-AuNP hybrid structures) for detecting mercury(II) ions in aqueous solutions. The lowest mercury(II) ion concentration detected by the sensor is 2.5 × 10(-8) M. The drain current shows rapid response within less than 10 s after the solution containing Hg(2+) ions was added to the active area of the rGO/TGA-AuNP hybrid sensors. Our work suggests that rGO/TGA-AuNP hybrid structures are promising for low-cost, portable, real-time, heavy metal ion detectors.  相似文献   

2.
Guo  Di  Hu  Zhirui  Li  Qian  Bian  Lijun  Song  Yu  Liu  Xiaoxia 《Journal of Materials Science》2022,57(1):563-575
Journal of Materials Science - As typical pseudocapacitive materials, manganese oxides have attracted great interest due to their high theoretical specific capacitance, abundant oxidation states...  相似文献   

3.
It is promising for AuNPs/RGO composites to be exploited for hydrogen evolution reaction (HER), due to the collaborative effects between the electrocatalytic Au nanoparticles (AuNPs) and conductive reduced graphene oxide (RGO). In this work, we used a simple way to decorate AuNPs onto the RGO surface by one pot in situ reduction both HAuCl4 and GO, for which the controlled average size of AuNPs (2.7, 11.5 and 45.7 nm) is adjusting with the mass ratio of HAuCl4 and GO. The obtained materials, AuNPs/RGO composites, show excellent electrocatalytic activity for the HER that critical dependence on the particle size of AuNPs. The results show that AuNPs/RGO with AuNPs size of 11.5 nm exhibits superior electrochemical activity: low onset potential of 0.029 V versus the reversible hydrogen electrode as well as a small Tafel slope of 86 mV per decade.  相似文献   

4.
Temperature-responsive resistance transition behaviors of the melamine sponges wrapped with different graphene oxide derivatives(i.e.nanoribbon,wide-ribbon and sheet)were investigated.Melamine sponge composites coated by three types of GO derivatives were prepared by a simple dip-coating approach.All these composites show good mechanical flexibility and reliability(almost unchanged compressive stress at 70%strain after 100 cycles),high hydrophobicity(water contact angle>120°),excellent flame resistance(self-extinguishing)and structural stability even after burning,which was used to construct the resistance-based fire alarm/warning sensor.Notably,the different resistance response behaviors of such sensors are strongly dependent on the GO size and network formed on the MF skeleton surface.Typically,at a fixed high temperature of~350℃,the three fire alarm sensors show different response time(to trigger the alarm light)of 6.3,8.4 and 11.1 s for nanoribbon,wide-ribbon and sheet at the same concentration,respectively.The structural observation and chemical analysis demonstrated that the discrepancy of temperature-responsive resistance transition behaviors of various GO derivatives was strongly determined by their different thermal reduction degrees during the high-temperature or flame treating process.This work offers a design and development for construction of smart fire alarm device for potential fire prevention and safety applications.  相似文献   

5.
6.
Magnetic γ-Fe2O3/SiO2 nanocomposites have been synthesized by impregnating a mesoporous silica matrix with a hexane solution of γ-ferric oxide nanoparticles. The subsequent heat treatment of samples in the course of synthesis influences the optical properties of the final nanostructural material. It is established that an increase in the temperature of annealing (crystallization) leads to a decrease in the energies of both direct and indirect allowed electron transitions to the conduction band.  相似文献   

7.
SnO2/Co3O4 (BTMO) with reduced graphene oxide (rGO) nanocomposite were synthesized by co-precipitation method to determine its electrochemical properties for the betterment of Supercapacitor applications. The XRD pattern of BTMO/rGO nanocomposite shows tetragonal rutile and spinal cubic structure. The XRD peak of BTMO/rGO nanocomposite is comparatively broader than the BTMO nanocomposite and bare nanoparticles due to the presence of high surface area rGO. From the SEM image it is observed that the BTMO nanocomposite has comparatively larger particles than the bare nanoparticles and BTMO/rGO nanocomposites. Hence, the BTMO/rGO nanocomposite has alteration in surface to volume ratio and improved electron conductivity were observed with increased integral area and current such as 2.5117?×?10?4 A/s and 3.1686?×?10?4 A respectively in CV behavior, when it is compared to BTMO nanocomposite and bare nanoparticles. The BTMO/rGO nanocomposite also has an increased specific capacitance value of 317.2 F/g at 1 A/g. The increased specific capacitance value of BTMO/rGO nanocomposites are mainly due to the synergistic effect between SnO2/Co3O4 and rGO. Hence, it may be responsible for the improved electron conductivity, due to the free diffusion pathway for the fast ion movement and also it has easily ion accessibility nature to the storage sites makes the materials with both the electric double layer capacitance and pseudocapacitance behavior. Hence, BTMO/rGO nanocomposite would be a promising candidate material for energy storage supercapacitor application.  相似文献   

8.
Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-storage devices. Therefore, flexible Li-S batteries are desired. In this study, we fabricated composite films of freestanding reduced graphene oxide nanotubes wrapped sulfur nanoparticles (RGONTs@S) by pressing RGONTs@S composite foams, which were synthesized by combining cold quenching with freeze-drying and a subsequent reduction process. These RGONTs@S composite films can serve as self-supporting cathodes for Li-S batteries without additional binders and conductive agents. Their interconnected tubular structure allows easy electron transport throughout the network and helps to confine the polysulfides produced during the charge/discharge process. As a result, the RGONTs@S composite films exhibited a high initial specific capacity, remarkable cycling stability, and excellent rate capability. More importantly, the RGONTs@S composite films can serve as electrodes in flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled using these electrodes and they displayed stable electrochemical performance at different bending states.
  相似文献   

9.
Pd-doped tin oxide nanoparticles dispersed in mesoporous silica were prepared by a thermal-decomposing method and characterized by isothermal nitrogen adsorption measurement, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tin oxide nanoparticles grow up slowly owing to confinement of the pores of the mesoporous silica. Due to the unique microstructure of the mesoporous silica, the obtained nanocomposite consists of a three-dimensional web of interconnected crystallites of tin oxide and exhibits electronic conductivity when enough tin oxide is assembled in the silica pores. The obtained nanocomposite has also a large specific surface area, and the tin oxide nanoparticles have a free surface in contact with the ambient air. Therefore, the samples exhibit a high sensitivity to CO gas, and have potential application.  相似文献   

10.
In this article,graphene oxide (GO) and benzotriazole-loaded mesoporous silica nanoparticles (BTA/MSNs)are combined on micro scale through the in situ polymerization of polydopamine (PDA),preparing a self-healing bi-functional GO (fGO) used as nano-fillers for anti-corrosion enhancement of waterborne epoxy(WEP) coatings.Scanning electronic microscopy (SEM) images show that the BTA/MSNs are uniformly distributed on the surface of high aspect ratio GO nanosheets to endow GO nanocontainer characteristics.UV-vis profiles demonstrate that fGO has pH-controlled release function.Modulus at lowest frequency is generally used for comparing the corrosion resistance of organic coatings.Modulus at lowest frequency(1.42 × 107 Ω cm2) after 30 days immersion in 3.5 wt.% NaCl solution revealed 2 orders of magnitude higher that of blank WEP (1.17 × 105 Ω cm2).With artificial cracks on its coatings,fGO/WEP had no obvious rust compared with blank WEP after 240 h of immersion.We anticipate that self-healing and physical barrier bi-functional nanocontainers improve the traditional anticorrosion coating efficiency with better,longer-lasting performance for shipping,oil drilling or bridge maintenance.  相似文献   

11.
12.
13.
To improve the dispersion stability of rod-like attapulgite (ATT) in polymers, a small amount of graphene oxide (GO) nanosheets were employed as a supporter to fix ATT before introducing into polymer. The ATT nanorods were found attached tightly and dispersed uniformly on the GO nanosheets from TEM images of GO-ATT hybrids. The dispersion stability of ATT in water was also improved after being attached on GO nanosheets due to the abundant hydrophilic groups of GO, which was paramount for introducing them into polymers through water blending method. Poly(vinyl alcohol) (PVA) was then chosen to be reinforced by these GO-supported ATT via water blending method. Compared to the heavy aggregation of neat ATT in PVA, a homogeneous distribution of ATT nanorods in the matrix was achieved by introducing them in the form of GO-ATT, indicating a favorable assisted dispersion effect of GO nanosheets for ATT. Furthermore, PVA/GO-ATT nanocomposites containing only 2 wt% GO-ATT exhibited a significantly increase of 41.4 and 83.6 % in tensile strength and storage modulus, respectively.  相似文献   

14.
In this study, the fabrication of ZnAl2O4/reduced graphene oxide nanocomposites is reported for the initial time. Two nanocomposites, ZnAl2O4/reduced graphene oxide‐50 and ZnAl2O4/reduced graphene oxide‐100, with different reduced graphene oxide contents (50 mg/ml and 100 mg/ml initial graphene oxide concentration respectively) were synthesized via a hydrothermal route; and characterized with the aid of suitable characterization and analytical techniques. For comparative purposes, two pure ZnAl2O4 samples were fabricated by citrate sol‐gel and urea combustion methods. The photocatalytic activity of the synthesized pure nanospinels and nanocomposites was studied for the degradation of rhodamine B dye under ultraviolet–A light irradiation. Compared to pure ZnAl2O4 nanoparticles, ZnAl2O4/reduced graphene oxide nanocomposites exhibited superior photocatalytic activity. The highest efficiency was observed for ZnAl2O4/reduced graphene oxide‐100 composite, where; full degradation of rhodamine B occurred after 45 min. The enhancements of the photocatalytic performance of ZnAl2O4/reduced graphene oxide composites were mainly attributed to unique electronic and surface properties of reduced graphene oxide.  相似文献   

15.
Phenylketonuria (PKU)‐associated DNA mutation in newborn children can be harmful to his health and early detection is the best way to inhibit consequences. A novel electrochemical nano‐biosensor was developed for PKU detection, based on signal amplification using nanomaterials, e.g. gold nanoparticles (AuNPs) decorated on the reduced graphene oxide sheet on the screen‐printed carbon electrode. The fabrication steps were checked by field emission scanning electron microscope imaging as well as cyclic voltammetry analysis. The specific alkanethiol single‐stranded DNA probes were attached by self‐assembly methodology on the AuNPs surface and Oracet blue was used as an intercalating electrochemical label. The results showed the detection limit of 21.3 fM and the dynamic range of 80–1200 fM. Moreover, the selectivity results represented a great specificity of the nano‐biosensor for its specific target DNA oligo versus other non‐specific sequences. The real sample simulation was performed successfully with almost no difference than a synthetic buffer solution environment.Inspec keywords: biosensors, nanosensors, nanoparticles, graphene compounds, gold, nanomedicine, DNA, molecular biophysics, biomedical equipment, electrochemical sensors, electrochemical electrodes, field emission scanning electron microscopy, voltammetry (chemical analysis), self‐assembly, biochemistryOther keywords: reduced graphene oxide, gold nanoparticles, phenylketonuria‐associated DNA mutation, newborn children, electrochemical nanobiosensor, signal amplification, nanomaterials, reduced graphene oxide sheet, screen‐printed carbon electrode, field emission scanning electron microscopy imaging, cyclic voltammetry, alkanethiol single‐stranded DNA probes, self‐assembly methodology, Oracet blue, intercalating electrochemical label, Au‐CO  相似文献   

16.
Nanocomposites (NCs) consisting of a gold nanorod core and a mesoporous silica shell doped with hematoporphyrin (HP) have been fabricated in order to improve the efficiency of cancer treatment by combining photothermal and photodynamic therapies (PDT + PTT) in vivo. In addition to the long-wavelength plasmon resonance near 810-830 nm, the fabricated NCs exhibited a 400-nm absorbance peak corresponding to bound HP, generated singlet oxygen under 633-nm excitation near the 632.5-nm Q-band, and produced heat under a 808-nm near-infrared (NIR) laser irradiation. These modalities were used for a combined PDT + PTT treatment of large (about 3 cm3) solid tumors in vivo with a xenorafted tumor rat model. NCs were directly injected into tumors and irradiated simultaneously with 633-nm and 808-nm lasers to stimulate the combined photodynamic and photothermal activities of NCs. The efficiency of the combined therapy was evaluated by optical coherence tomography, histological analysis, and by measurements of the tumor volume growth during a 21-day period. The NC-mediated PDT led to weak changes in tissue histology and to a moderate 20% decrease in the tumor volume. In contrast, the combined PDT + PTT treatment resulted in the large-area tumor necrosis and led to dramatic decrease in the tumor volume.  相似文献   

17.
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.  相似文献   

18.
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.  相似文献   

19.
20.
A linker-free reduced graphene oxide (R-GO)-CdSe nanoparticle (CdSe NP) hybrid nanostructure was synthesized using a chemical vapor deposition method. CdSe NPs were selectively deposited on the surface of R-GO with controlled NP size and coverage. The distribution and morphology of CdSe NPs on R-GO were characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The resulting hybrid nanostructure exhibited photoresponse to both laser and simulated sunlight AM 1.5G excitation. The hybrid structure with low CdSe NP coverage showed distinct photoresponse times in air, N(2), NH(3), and NO(2), while high CdSe NP coverage led to nearly constant but three orders of magnitude smaller response time in all gases. Such a difference in photoresponse as a function of NP coverage is attributed to the energy band bending at the interface between the R-GO and the CdSe NP. The selective deposition of CdSe NPs on R-GO and the understanding of the subsequent photoinduced charge transfer can potentially lead to high-performance optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号