首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A previous study performed using steady state fluorescence has revealed the existence of residual structures surrounding the two tryptophan residues in an unfolded form of yeast phosphoglycerate kinase [Garcia, P., et al. (1995) Biochemistry 34, 397-404]. In this paper, we present a more detailed characterization of these residual structures, through the study of two single tryptophan-containing mutants of yPGK, W333F and W308Y. Denaturation experiments have first been performed at low temperatures to assess the nature of the interactions stabilizing these residual structures. On the other hand, the compactness and dynamics of the protein matrix were probed using tryptophan fluorescence quenching by acrylamide at various denaturant concentrations. Taking into consideration the changes in sample viscosity induced by addition of guanidinium chloride made feasible the use of this technique during the denaturation process. These different approaches have shown that the residual structures around tryptophan 308 are mainly stabilized by hydrophobic interactions and are more compact and less fluctuant than the ones surrounding tryptophan 333. Native and denatured yPGK have also been studied by time-resolved fluorescence spectroscopy. In the native protein, tryptophan buried in the core, W333, is mainly associated with a lifetime close to 0.1 ns, whereas tryptophan that is partially accessible to the solvent, W308, has a lifetime close to 0. 5 ns. The time-resolved tryptophan fluorescence emission of wild-type yPGK can be accounted for quantitatively by the summed emissions of its two single tryptophan mutants. The significance of minor long lifetime components is discussed for the two tryptophan residues. This new assignment of fluorescent decay times has allowed for the detection of a folding intermediate in which the environment of tryptophan 333 is modified for denaturant concentrations lower than those for tryptophan 308.  相似文献   

2.
The binding of ligands to phosphofructokinase 2 (Pfk-2) from Escherichia coli induces changes in the fluorescence emission properties of its single tryptophan residue, Trp88, suggesting that upon binding the protein undergoes a conformational change. This fluorescence probe was used to determine the presence of an allosteric site for MgATP2- in the enzyme. Fructose 6-phosphate (fructose-6-P), the first substrate that binds to the enzyme with an ordered bi-bi mechanism, increases the fluorescence up to 30%. The saturation curve for this compound is hyperbolic with a Kd of 6 microM. The titration of Pfk-2 with MgATP2- causes a quenching of fluorescence of about 30% of its initial value, with a blue shift of 7 nm in the emission maximum. The response is cooperative with a Kd of 80 microM and a Hill coefficient of 2. The interaction of MgATP2- cannot take place at the active site in the absence of fructose-6-P, due to the ordered kinetic mechanism. Addition of compounds that bind to the catalytic site of Pfk-2, such as ATP4- or Mg-AMP-PNP, did not produce significant changes in the fluorescence spectrum of Trp88. However, in the absence of Mg2+, the addition of ATP4- to the enzyme-fructose-6-P complex shows a hyperbolic increase of fluorescence of 8%. Acrylamide steady-state quenching experiments for different enzyme-ligand complexes of Pfk-2, indicate that the tryptophan in the enzyme-MgATP2- complex is exposed to a much smaller extent to the solvent than in the free enzyme or in the enzyme-fructose-6-P complex. The effect of the binding of fructose-6-P or MgATP2- on the polarization fluorescence of the emission of Trp88 in Pfk-2 indicates changes in the local mobility of the Trp88 in both enzyme complexes. The average lifetime for Trp88 in Pfk-2 was found to be unusually large, approximately 7.7 ns, and did not vary significantly with the ligation state of the enzyme, which demonstrates that the quenching or enhancement of fluorescence induced by the ligands is mainly due to the complex formation with Pfk-2. These results demonstrate the presence of an allosteric site for MgATP2- in Pfk-2 from E. coli, responsible for the inhibition of the enzyme activity by this ligand.  相似文献   

3.
Different classes of tryptophan residues in sarcoplasmic reticulum calcium-ATPase were investigated with respect to their exposure to quenchers and sensitivity to high-affinity calcium binding to the ATPase. The charged quenchers, iodide and cesium, produced only slight quenching of ATPase fluorescence, whereas noncharged acrylamide and notably oxygen produced significant quenching. This finding gives support to the proposed location of most of the tryptophan residues of the ATPase in transmembrane domains of this protein (MacLennan et al., 1985, Nature 316r, 696-700). Among the different quenchers tested, oxygen quenching alone was sensitive to calcium binding to the ATPase, indicating that oxygen quenched tryptophan residues located in regions of the ATPase molecule which undergo conformational changes upon calcium binding. Time-resolved oxygen quenching data were analyzed with a recently described model that takes into account the existence of two different classes of emitters in the ATPase (Ferreira and Verjovski-Almeida, 1991, J. Lumin. 48, 430-434): a short-lived blue-shifted exponential component plus a long-lived red-shifted continuous lifetime distribution. Oxygen quenching of the single-exponential lifetime component was found to be insensitive to calcium, whereas quenching of the distributed lifetime component was significantly (ca 25%) enhanced by calcium binding. The different sensitivities of the two tryptophan classes to calcium binding to the ATPase are interpreted in terms of the proposed location of tryptophan residues in relation to the calcium transport sites in the ATPase molecule.  相似文献   

4.
A general approach to dissecting the complex photophysics of tryptophan is presented and used to elucidate the effects of amino acid functional groups on tryptophan fluorescence. We have definitively identified the amino acid side chains that quench tryptophan fluorescence and delineated the respective quenching mechanisms in a simple model system. Steady-state and time-resolved fluorescence techniques, photochemical H-D exchange experiments, and transient absorption techniques were used to measure individual contributions to the total nonradiative rate for deactivation of the excited state, including intersystem crossing, solvent quenching, and excited-state proton and electron transfer rates. Eight amino acid side chains representing six functional groups quench 3-methylindole fluorescence with a 100-fold range in quenching rate constant. Lysine and tyrosine side chains quench by excited-state proton transfer; glutamine, asparagine, glutamic and aspartic acid, cysteine, and histidine side chains quench by excited-state electron transfer. These studies provide a framework for deriving detailed structural and dynamical information from tryptophan fluorescence intensity and lifetime data in peptides and proteins.  相似文献   

5.
The 5 tryptophan residues of chicken sarcomeric mitochondrial creatine kinase (Mib-CK) were individually replaced by phenylalanine or cysteine using site-directed mutagenesis. The mutant proteins were analyzed by enzyme kinetics, fluorescence spectroscopy, circular dichroism, and conformational stability studies. In the present work, Trp-223 is identified as an active-site residue whose replacement even by phenylalanine resulted in > or = 96% inactivation of the enzyme. Trp-223 is responsible for a strong (18-21%) fluorescence quenching effect occurring upon formation of a transition state-analogue complex (TSAC;Mib-CK.creatine.MgADP.NO3-), and Trp-223 is probably required for the conformational change leading to the TSAC-induced octamer dissociation of Mib-CK. Replacement of Trp-206 by cysteine led to a destabilization of the active-site structure, solvent exposure of Trp-223, and to the dissociation of the Mib-CK dimers into monomers. However, this dimer dissociation was counteracted by TSAC formation or the presence of ADP alone. Trp-264 is shown to be located at the dimer-dimer interfaces within the Mib-CK octamer, being the origin of another strong (25%) fluorescence quenching effect, which was observed upon the TSAC-induced octamer dissociation. Substitution of Trp-264 by cysteine drastically accelerated the TSAC-induced dissociation and destabilized the octameric structure by one-fourth of the total free interaction energy, probably by weakening hydrophobic contacts. The roles of the other 2 tryptophan residues, Trp-213 and Trp-268, could be less well assigned.  相似文献   

6.
7.
Microenvironment and conformation of the active site of xylanase from an extremophilic Bacillus was deciphered for the first time using fluorescence spectroscopy. NBS modified enzyme showed complete inactivation and the kinetic analysis implicated the presence of an essential tryptophan at the active site of xylanase. Xylan (0.5%) protected the enzyme completely from inactivation with NBS, whereas it afforded 35% protection against the loss of fluorescence, suggesting that not all the tryptophans are involved at the substrate binding site. Quenching studies revealed that acrylamide was more efficient than KI and CsCl as indicated by the higher Stern-Volmer quenching constants (Ksv). The steric factor represented by the percentage accessibility of the tryptophan residues of XylII was higher with the positively charged Cs+ (80) than with the negatively charged I- (10), suggesting that the tryptophan residues are located in a relatively electronegative environment. In the presence of 6 M Gdn HCl the fluorescence shifted to 350 nm with increased accessibility of the fluorophore to the quenchers. The proximity of the essential carboxyl groups with a high pKa value of 6.9 [Chauthaiwale and Rao (1994) Biochim. Biophys. Acta] probably contributes to the electronegative environment of the tryptophan residue. Our results on sequence analysis of the gene encoding for XylII (Accession Number U83602 in the GenBank database) have shown that Trp 61 is highly conserved and may play a role in the structure-function relationship of the enzyme.  相似文献   

8.
Nanosecond-pulse fluorimetry of wheat germ agglutinin is analyzed as a function of both excitation and emission wavelengths. When excited at 280 nm, wheat germ agglutinin fluorescence exhibited three lifetimes: one corresponding to the tyrosine residues as a whole and two others corresponding to the tryptophyl emission. The tyrosine contribution to the emission spectrum deduced from this method was in good agreement with that reported previously in steady-state fluorescence experiments [Privat, J.P. and Monsigny, M. (1975) Eur. J. Biochem. 60, 555-567]. The fluorescence decay of each tryptophan residue was not a single exponential function when wheat germ agglutinin was excited at 295 nm. This could be related to the microenvironment of the indole chromophores in the protein. The comparison of the quantum yield and of average lifetime showed that some tryptophan residues were completely quenched. Energy transfer from tyrosines to tryptophan residues previously detected in steady-state fluorescence was also revealed by fluorescence decay measurements. Comparison of both methods showed that an important part of transfers occurred with a very fast rate equal to or greater than 10(10) s-1. Both lifetimes and the ratio of the short and the long-lived component were found dependent on tri-N-acetylchitotriose binding.  相似文献   

9.
Tryptophan residues in alpha-galactosidase were modified with bromosuccinimide. The fact that galactose, a specific inhibitor of alpha-galactosidase, does not prevent this modification demonstrates that tryptophan residues are not located in galactose binding sites. Analysis of the inactivation kinetics revealed two groups of Trp residues (8.5 and 7.5 residues) with different accessibility for N-bromosuccinimide. We studied specific quenching of alpha-galactosidase fluorescence resulting from modification of an sulfhydryl group in the active site of the enzyme with Hg2+ and Ag+ ions. The specific quenching is due to conformational changes of the enzyme. Forster's radii were determined for various protein--chromophore complexes. Dynamic quenching of alpha-galactosidase fluorescence was investigated. To describe abnormal dynamic quenching in alpha-galactosidase, a modification of the Stern--Volmer equation is suggested.  相似文献   

10.
In order to assess the importance of a variety of environmental factors on the structure of bovine prothrombin fragment 1, we have examined acrylamide quenching of fragment 1 intrinsic fluorescence. Tryptophan exposure, determined from Stern-Volmer plots, is heterogeneous with one or more of the three fragment 1 tryptophans being exposed to solvent. In the presence of Ca2+ or Mg2+ even the most accessible tryptophan(s) are relatively buried. Only small differences in tryptophan exposure may exist between fragment 1-Ca2+ and fragment 1-Mg2+ complexes. Lowering pH, on the other hand, results in increased tryptophan exposure. Finally, structural isomers of fragment 1 which exist in the absence of metal ions have identical tryptophan exposure as determined by acrylamide quenching and fluorescence intensity.  相似文献   

11.
NADP-malic enzyme from maize leaves is covalently labeled with a fluorescent-SH reactive probe eosin-5-maleimide (EMA), which reacts with groups that are totally protected by NADP against inactivation. The comparison of the emission fluorescence spectra of the native and the modified enzyme suggests the proximity of the fluorescent groups of the native enzyme (probably tryptophanyl groups) and the EMA modified residues. Intrinsic fluorescence quenching studies shows that NADP is the only substrate capable to interact with the fluorescent excited groups of the enzyme, while Mg2+ is able to increase this interaction. Quenching studies of EMA-bound fluorescence shows that the NADP-binding site was modified and thus uncapable of further interaction with the nucleotide. When the results of protection studies are combined with those of extrinsic quenching experiments, we must conclude that EMA reacts with sulfhydryl groups that are involved in the NADP-binding site of the enzyme.  相似文献   

12.
Mutants of RNA polymerase sigma70 subunit from Escherichia coli with unique cysteine residues engineered into conserved region 1 (autoinhibition domain of sigma70), region 2.4 (-10 DNA element binding domain), region 4.2 (-35 DNA element binding domain), and a nonconserved region between regions 1 and 2 were prepared. The chemical reactivity of the cysteine at each position was determined for free sigma70 and sigma70 in complex with the core polymerase and was used as a measure of a conformational response of a particular region of the protein to an interaction with the core polymerase. Both increases and decreases in cysteine reactivity were observed in the presence of core polymerase at several positions in sigma70, providing direct physical evidence for modulation of sigma70 conformation by the core enzyme. Binding of the core polymerase resulted in increased solvent exposure of DNA binding domains of sigma70 and in more complex changes in the autoinhibition domain (region 1). Similar conformational changes in sigma70 were detected using fluorescence probes covalently attached to cysteine residues engineered into sigma70. Thus, the results obtained provided physical evidence supporting a model in which core enzyme allosterically regulates DNA binding activity of sigma70 by "unmasking" its DNA binding domains.  相似文献   

13.
14.
Six single-Trp mutants were engineered by individually reintroducing each of the native Trp residues into a functional lactose permease mutant devoid of Trp (Trp-less permease; Menezes ME, Roepe PD, Kaback HR, 1990, Proc Natl Acad Sci USA 87:1638-1642), and fluorescent properties were studied with respect to solvent accessibility, as well as alterations produced by ligand binding. The emission of Trp 33, Trp 78, Trp 171, and Trp 233 is strongly quenched by both acrylamide and iodide, whereas Trp 151 and Trp 10 display a decrease in fluorescence in the presence of acrylamide only and no quenching by iodide. Of the six single-Trp mutants, only Trp 33 exhibits a significant change in fluorescence (ca. 30% enhancement) in the presence of the substrate analog beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). This effect was further characterized by site-directed fluorescent studies with purified single-Cys W33-->C permease labeled with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS). Titration of the change in the fluorescence spectrum reveals a 30% enhancement accompanied with a 5-nm blue shift in the emission maximum, and single exponential behavior with an apparent KD of 71 microM. The effect of substrate binding on the rate of MIANS labeling of single-Cys 33 permease was measured in addition to iodide and acrylamide quenching of the MIANS-labeled protein. Complete blockade of labeling is observed in the presence of TDG, as well as a 30% decrease in accessibility to iodide with no change in acrylamide quenching. Overall, the findings are consistent with the proposal (Wu J, Frillingos S, Kaback HR, 1995a, Biochemistry 34:8257-8263) that ligand binding induces a conformational change at the C-terminus of helix I such that Pro 28 and Pro 31, which are on one face, become more accessible to solvent, whereas Trp 33, which is on the opposite face, becomes less accessible to the aqueous phase. The findings regarding accessibility to collisional quenchers are also consistent with the predicted topology of the six native Trp residues in the permease.  相似文献   

15.
Fluorescence spectroscopy (both steady-state and time-resolved) was used to study the fragment 579-601 of gp41 ectodomain (HIV-1), a highly conserved sequence and major epitope, regarding (1) structural information, (2) interaction with membrane model systems, and (3) location in the phospholipid bilayer. The peptide was characterized both in its monomeric (after reduction of the disulfide bond between cysteine residues) and in the dimeric forms. The change of the fluorescence anisotropy between monomer and dimer was rationalized on the basis of energy migration, and a distance between the two tryptophan (Trp) residues of approximately 6 A was obtained. Using different fluorescence spectroscopy approaches, it was demonstrated that, despite the fact that monomeric gp41 fragment incorporates in the membrane model systems studied, the dimeric form does not interact with these vesicles. A methodology based on the increase of the mean fluorescence lifetime averaged by the preexponentials was derived, to obtain the partition coefficient of the peptide in the different lipid systems. Fluorescence quenching using lipophilic probes and red edge excitation shift (REES) were used to study the location of the gp41 fragment in the membrane. It was concluded that the Trp residue is located in a shallow position, near the interface. The REES results show an uncommonly large wavelength shift (18 nm) for the gp41 fragment incorporated in the membrane. Our results are consistent with a "two steps" model for the gp41 fusion mechanism similar to the one proposed for influenza virus hemagglutinin.  相似文献   

16.
Horse liver alcohol dehydrogenase contains two tryptophan residues per subunit, Trp-15 on the surface of the catalytic domain and Trp-314 buried in the interface between the subunits of the dimer. We studied the contributions of the tryptophans to fluorescence and catalytic dynamics by substituting Trp-314 with a leucine residue and making two compensatory mutations that were required to obtain a stable protein, leading to the triple mutant M303F-L308I-W314L enzyme. The substitutions increased by two- to sixfold the turnover numbers for ethanol oxidation, acetaldehyde reduction, and the dissociation constants of the coenzymes. The rate of the exponential burst phase for the transient oxidation of ethanol increased slightly, but the rate of dissociation of the enzyme-NADH complex still limited turnover of ethanol, as for wild-type enzyme. The three substitutions at the dimer interface apparently activate the enzyme by allowing more rapid conformational changes that accompany coenzyme binding, probably due to movement of the loop containing residues 293 to 298. The emission spectrum of M303F-L308I-W314L enzyme, which contains Trp-15, was redshifted compared to wild-type enzyme. Time-resolved fluorescence measurements with the triple mutant show that the decay of Trp-15 is dominated by a approximately 7-ns component. In the mutant enzyme with Trp-15 substituted with phenylalanine, the decay of Trp-314 is dominated by a approximately 4-ns component. Solute quenching data for wild-type enzyme and the mutants show that only Trp-15 is exposed to iodide and acrylamide, whereas Trp-314 is inaccessible. The luminescence properties of the tryptophan residues in the mutated enzymes are consistent with conclusions from studies of the wild-type enzyme [M. R. Eftink, 1992, Adv. Biophys. Chem. 2, 81-114].  相似文献   

17.
A portion of the neurofibrillary tangles of Alzheimer's disease has the characteristics of cross-linked protein. Because the principal component of these lesions is the microtubule-associated protein tau, and because a major source of cross-linking activity within neurons is supplied by tissue transglutaminase (TGase), it has been postulated that isopeptide bond formation is a major posttranslational modification leading to the formation of insoluble neurofibrillary tangles. Here we have mapped the sites on two isoforms of human tau protein (tau23 and tau40) capable of participating in human TGase-mediated isopeptide bond formation. Using dansyl-labeled fluorescent probes, it was shown that eight Gln residues can function as amine acceptor residues, with two major sites being Gln351 and Gln424. In addition, 10 Lys residues were identified as amine donors, most of which are clustered adjacent to the microtubule-binding repeats of tau in regions known to be solvent accessible in filamentous tau. The distribution of amine donors correlated closely with that of Arg residues, suggesting a link between neighboring positive charge and the TGase selectivity for donor sites in the protein substrate. Apart from revealing the sites that can be cross-linked during the TGase-catalyzed assembly of tau filaments, the results suggest a topography for the tau monomers so assembled.  相似文献   

18.
Light meromyosin (LMM 77), the C-terminal proteolytic peptide from myosin rod, is a 900 A coiled-coil that contains two pairs of tryptophan residues in d-positions of the heptad repeat (abcdefg)n. Previous studies showed that LMM 77 unfolded in two transitions and suggested that both Trp pairs were located in the least stable unfolding domain. Here, the thermal and denaturant unfolding properties of LMM 59, a recombinant N-terminal truncated LMM, containing only one of the Trp pairs, was compared to LMM 77. LMM 59 unfolded in two transitions with similar midpoints to the two transitions of LMM 77. However, only the second transition of LMM 59 affected the Trp fluorescence, indicating that the two pairs of Trp residues in LMM 77 are in different unfolding domains. Disulfide-crosslinked LMM 59 verified this assignment. Solute-quenching studies showed that the accessibility of the Trp in LMM 59 decreased only by 56% on forming filaments. Electron micrographs indicated that all of LMM 59 is located within the core of a bipolar tactoid with the Trp-containing region the most accessible to negative strain, in agreement with the solute-quenching studies. This suggests that part of the core of the myosin thick filament is appreciably exposed to solvent.  相似文献   

19.
D-3-Phosphoglycerate dehydrogenase from Escherichia coli is a homotetrameric enzyme which is allosterically regulated by the end product of its pathway, L-serine. The enzyme binds 4 L-serine molecules at two interfaces formed by the noncovalent association of the regulatory domains. The two domains that comprise each interface are related by an approximately 180 degrees axis of symmetry, and two serine molecules bind at each interface by forming a hydrogen bond network between the domains. A model has been proposed that suggests that serine functions by drawing adjacent domains together and that this in turn translates a conformational change to the active site. A tryptophan residue has been engineered into the helices flanking the regulatory interfaces that displays significant quenching in response to serine binding. Residues on the adjacent subunit appear to be primarily responsible for the tryptophan quenching and thus support the hypothesis that serine binding leads to an increase in the proximity between residues on neighboring subunits. Serine binding studies show that this quenching, as well as inhibition of enzymatic activity, are essentially complete when only two of the four serine binding sites are occupied. The requirement for only one serine per interface is consistent with the notion that the interface is formed by relatively rigid domains and that hydrogen bonding at only a single site is all that is required to substantially close the interface. The fluorescence quenching in response to L-serine binding generally correlates with enzymatic inhibition, but there appears to be a slight lag in inhibition relative to quenching at low serine concentrations. The observed fluorescence quenching of residues in the regulatory domains of D-3-phosphoglycerate dehydrogenase provide the first direct evidence for a conformational change in response to effector binding and provide a means to monitor the first step in the allosteric mechanism.  相似文献   

20.
The effects of the solvent conditions (buffer pH 9, 8, or 7 or buffer pH 6.5 alone or mixed with 3.2% ethanol or 6.2% formamide) on the protein dynamics of horse apomyoglobin were investigated through tryptophan fluorescence quenching, spectra, and decay properties. Raising the pH (which induces discontinuous protein conformation changes) increases the structural fluctuations inside the hydrophobic A, G, and H helix core. Mixed solutions containing either 3.2% ethanol or 6.2% formamide (which redistribute water molecules on the protein surface) produce protein dynamics changes in the vicinity of the two Trp residues, without inducing particular constraints on these very residues. Formamide increases, in the same way, the polarity and the protein flexibility while ethanol reduces both. The present fluorescence work also shows that, whatever the outside solvent, the two Trp residues W7 and W14, embedded in the A, G, and H helix core, are equally and statistically reached by small molecules diffusing inside the protein matrix. Hydrogen-tritium exchange measurements on the protein in mixed solvents reveal that the dynamics of the A, G, and H helix cluster and of the B and E helixes are greatly influenced by the nature of the outside medium. A small amount of formamide in the buffer increases the protein fluctuations while an ethanol-water mixture reduces them. We suggest that the hydratation state of the protein surface could be the relevant parameter of the protein dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号