首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对30CrNiMoNb钢不同奥氏体化温度下析出相进行了研究,结果表明,钢在热轧态时Nb C大量析出有效地防止晶粒长大,使基材获得细小原始奥氏体晶粒。钢淬火时,当淬火温度低于1050℃时,Nb C析出相部分固溶于奥氏体,但未固溶Nb C可起到钉扎作用,抑制奥氏体晶粒长大,保证30CrNiMoNb钢获得细晶组织;当温度高于1050℃,Nb C部分固溶于奥氏体,未固溶部分出现明显长大,对奥氏体晶粒的钉扎作用减弱,导致奥氏体晶粒长大。  相似文献   

2.
通过析出相粗化模型、Zener晶粒长大模型和试验验证,分析NbC析出相对17Cr2Ni2MoVNb钢在高温下晶粒尺寸的钉扎影响。模型与试验结果表明,NbC的粗化与回溶会降低对晶粒长大的钉扎作用。当等温温度低于1000℃时,NbC析出相对奥氏体晶粒的长大可以起到有效抑制,随着等温温度的升高,NbC析出相对奥氏体长大的抑制作用越来越弱。  相似文献   

3.
通过理论计算不同Nb含量9310钢中碳化物析出相的体积分数和颗粒半径,并对比验证相应的金相组织,研究了Nb微合金化9310钢中碳化物的析出规律。结果表明,随加热温度的升高,钢中Nb的固溶量逐渐增多,析出相NbC的体积分数逐渐减小,同时发生Oswald熟化。当温度为1050℃时,含Nb钢中析出相颗粒半径不小于50 nm;当温度高于1150℃时,钢中0.047%的微量Nb才能够完全固溶;含Nb钢中细小的NbC颗粒钉扎晶界,有效抑制了奥氏体晶粒的粗化,可使晶粒粗化温度从1000℃提高到1150℃。  相似文献   

4.
在20CrNiMoH钢中添加了0.03%的Nb,通过末端淬火试验、物理化学相分析以及热膨胀试验等研究Nb对试验钢在950和1200℃淬火时对其淬透性的影响。结果表明:当淬火温度为950℃时,Nb主要在析出相中,由于Nb的添加细化了晶粒,含铌钢的淬透性低于不含铌钢。当淬火温度为1200℃时,NbC析出相发生回溶,Nb固溶到奥氏体晶粒中,含铌钢的淬透性高于不含铌钢。热膨胀试验结果表明固溶Nb具有降低试验钢的临界冷却速度,提高Ms点以及推迟珠光体铁素体转变,扩大马氏体贝氏体相区的作用,从而提高其淬透性。  相似文献   

5.
采用光镜和电镜相结合的方法,研究SXQ500/550D钢再加热奥氏体化后晶粒长大行为以及温度、第二相粒子、原始组织及亚温淬火工艺对奥氏体晶粒长大行为的影响。结果表明:试验钢的晶粒粗化温度为1020℃,故奥氏体化时温度最好低于1020℃。当在870~970℃之间淬火时第二粒子数量较多,奥氏体晶界几乎完全被钉扎,奥氏体晶粒的生长速度较慢;随着温度不断升高,第二相粒子数量减少,钉扎作用被削弱甚至失效,在温度达到1020℃时奥氏体晶粒快速长大。原始组织越均匀细小,碳化物弥散度越大,则奥氏体晶粒越细小。试样经单相区淬火处理后再进行一次亚温淬火处理,晶粒得到明显细化,组织也变得均匀。  相似文献   

6.
研究了60Mn3A13Ni2CrVNb调质型低密度钢的奥氏体晶粒长大行为,并分析了析出相对奥氏体晶粒长大行为的影响机理.结果 表明,在不同加热温度下(950~1250℃),随加热温度升高,实验钢的奥氏体晶粒逐渐增大,其中,1100℃以下加热时晶粒生长缓慢,1100℃及以上加热时,晶粒粗化明显,其晶粒粗化温度约为1100℃,此外存在1250℃加热时晶粒再次显著粗化现象.显微组织分析表明碳化铌是影响实验钢奥氏体晶粒长大行为的关键因素,且碳化铌的尺寸具有重要影响,实验钢中存在3种尺寸的碳化铌析出相,分别为小于50 nm、0.2~0.35 iμm、大于1μm.1100℃及以上加热时,尺寸小于50 nm的微小碳化铌析出相固溶,对奥氏体晶界的钉扎作用减弱,是1100℃及以上加热时晶粒粗化的主要原因;1250℃加热时,0.2~0.35 μm的碳化铌析出相固溶,导致1250℃加热时晶粒显著粗化;尺寸大于lμm的碳化铌析出相即使在1250℃保温12 h也难以溶解.  相似文献   

7.
 研究了950~1300℃固溶处理对00Cr25Ni7Mo4N超级双相不锈钢组织的影响。结果表明,≤1000℃固溶处理时,钢中有σ相析出,要消除热轧态的σ相,固溶温度应大于1050℃;随着固溶温度升高,铁素体相含量增加,奥氏体相含量下降。最佳固溶处理温度在1050℃~1100℃之间,此时两相比例接近1:1;随着固溶温度的提高,两相的晶粒尺寸在逐渐增大,到了1250℃晶粒明显长大。  相似文献   

8.
研究不同调质工艺处理的石油套管用36Mn2V钢的0℃冲击性能。用金相显微镜、扫描电子显微镜和透射电子显微镜观察与分析钢的奥氏体晶粒大小、冲击断口形貌、钢中淬火未溶第二相以及回火碳化物的析出行为。结果表明,当回火温度一定,淬火温度在890℃时,淬火未溶第二相的数量较少而且奥氏体晶粒未过分长大,冲击功最大。当淬火温度一定,冲击功随着回火温度的升高而增大。回火温度较低时(500℃),钢中碳化物主要在晶界和马氏体板条界面上呈连续状析出,冲击功较低;回火温度较高时(620℃),碳化物多在晶内析出而且铁素体呈等轴状,冲击性能较好。  相似文献   

9.
通过金相观察研究了加热温度对2.25Cr-1Mo-0.25V钢奥氏体晶粒长大规律的影响.结果表明,在1000℃以下晶粒长大不明显,加热温度超过1000℃晶粒快速长大,在1300℃晶粒完全粗化,这种钢的晶粒粗化温度为1000℃.第二相粒子在较低加热温度下不溶解,这些未溶解的第二相质点可起到对晶界迁移的钉扎作用.随着加热温度的升高,部分第二相粒子开始溶解,使其阻碍奥氏体晶粒长大的钉扎作用减弱.第二相质点的尺寸和体积分数的比值决定了奥氏体晶粒的粗化程度,一旦发生解钉现象,奥氏体晶粒快速长大.  相似文献   

10.
通过金相显微分析方法研究了3种不同成分的低碳微合金钢再加热奥氏体化后晶粒粗化行为,探讨了第二相粒子对奥氏体晶粒的钉扎作用.结果表明:3种钢的粗化温度分别为:A钢1100℃,B和C钢为1050℃.在900~1000℃,第二相粒子数量较多,奥氏体晶界几乎被完全钉扎,奥氏体晶粒的粗化速率较低.温度继续升高,第二相粒子数量下降,奥氏体晶粒开始异常长大.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号