共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架.近年来,由于深度神经网络能够有效地挖掘出数据深层特征,其研究倍受各国学者的关注.深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示,计算出数据集的相似度矩阵,然后利用谱聚类获得数据的最终聚类结果.然而,现实数据存在维度过高、数据结构复杂等问题,如何获得更鲁棒的数据表示,改善聚类性能,仍是一个挑战.因此,本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC).利用自注意力对抗网络在自动编码器的特征学习中施加一个先验分布约束,引导所学习的特征表示更具有鲁棒性,从而提高聚类精度.通过在多个数据集上的实验,结果表明本文算法在精确率(ACC)、标准互信息(NMI)等指标上都优于目前最好的方法. 相似文献
4.
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架.近年来,由于深度神经网络能够有效地挖掘出数据深层特征,其研究倍受各国学者的关注.深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示,计算出数据集的相似度矩阵,然后利用谱聚类获得数据的最终聚类结果.然而,现实数据存在维度过高、数据结构复杂等问题,如何获得更鲁棒的数据表示,改善聚类性能,仍是一个挑战.因此,本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC).利用自注意力对抗网络在自动编码器的特征学习中施加一个先验分布约束,引导所学习的特征表示更具有鲁棒性,从而提高聚类精度.通过在多个数据集上的实验,结果表明本文算法在精确率(ACC)、标准互信息(NMI)等指标上都优于目前最好的方法. 相似文献
5.
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架.近年来,由于深度神经网络能够有效地挖掘出数据深层特征,其研究倍受各国学者的关注.深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示,计算出数据集的相似度矩阵,然后利用谱聚类获得数据的最终聚类结果.然而,现实数据存在维度过高、数据结构复杂等问题,如何获得更鲁棒的数据表示,改善聚类性能,仍是一个挑战.因此,本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC).利用自注意力对抗网络在自动编码器的特征学习中施加一个先验分布约束,引导所学习的特征表示更具有鲁棒性,从而提高聚类精度.通过在多个数据集上的实验,结果表明本文算法在精确率(ACC)、标准互信息(NMI)等指标上都优于目前最好的方法. 相似文献
6.
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架.近年来,由于深度神经网络能够有效地挖掘出数据深层特征,其研究倍受各国学者的关注.深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示,计算出数据集的相似度矩阵,然后利用谱聚类获得数据的最终聚类结果.然而,现实数据存在维度过高、数据结构复杂等问题,如何获得更鲁棒的数据表示,改善聚类性能,仍是一个挑战.因此,本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC).利用自注意力对抗网络在自动编码器的特征学习中施加一个先验分布约束,引导所学习的特征表示更具有鲁棒性,从而提高聚类精度.通过在多个数据集上的实验,结果表明本文算法在精确率(ACC)、标准互信息(NMI)等指标上都优于目前最好的方法. 相似文献
7.
在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种方法是通过领域专家的手动标注,这种方法不仅代价大还容易出错,因此由模型自动合成高质量数据集的方法更为合理.近年来,由于计算机视觉领域的飞速发展,已经有不少致力于图像数据集合成的研究,但是这些模型不能直接应用在结构化数据表上,并且据调研,对这类数据的相关研究几乎没有.因此,提出了一个针对结构化数据表的生成模型TableGAN,该模型是生成式对抗网络(generative adversarial network, GAN)家族的一种变体,通过对抗训练的方式提高生成模型的性能.针对结构化数据的特征改变了传统GAN模型的内部结构,包括优化函数等,使其能够生成高质量的结构化数据用于改善模型的训练过程.通过在真实数据集上的大量实验表明了此模型的有效性,即在扩大后的数据集上训练模型的效果有明显提升. 相似文献
8.
9.
陈弘晟 《电脑编程技巧与维护》2021,(5):3-7
深度学习是机器学习领域的一个重要分支,近年来在诸多领域取得突破性进展.对利用深度学习改进传统聚类算法,解决高维数据聚类问题开展了大量工作.对近几年深度聚类的研究进展进行了综述,从网络结构、损失函数、评价指标等方面进行了分析,并对其主要研究方向、应用进展等进行概括,对深度聚类的未来发展趋势进行了展望. 相似文献
10.
深度神经网络模型通常存在大量冗余的权重参数,计算深度网络模型需要占用大量的计算资源和存储空间,导致深度网络模型难以部署在一些边缘设备和嵌入式设备上。针对这一问题,提出了一种基于梯度的深度网络剪枝(GDP)算法。GDP算法核心思想是以梯度作为评判权值重要性的依据。首先,通过自适应的方法找出阈值进行权值参数的筛选;然后,剔除那些小于阈值的梯度所对应的权值;最后,重新训练剪枝后的深度网络模型来恢复网络精度。实验结果表明:在CIFAR-10数据集上,GDP算法在精度仅下降0.14个百分点的情况下,计算量减少了35.3个百分点;与当前流行的PFEC算法相比,GDP算法使网络模型精度提高了0.13个百分点,计算量下降了1.1个百分点,具有更优越的深度网络压缩与加速性能。 相似文献
11.
深度神经网络通常是过参数化的,并且深度学习模型存在严重冗余,这导致了计算和存储的巨大浪费.针对这个问题,本文提出了一种基于改进聚类的方法来对深度神经网络进行压缩.首先通过剪枝策略对正常训练后的网络进行修剪,然后通过K-Means++聚类得到每层权重的聚类中心从而实现权值共享,最后进行各层权重的量化.本文在LeNet,AlexNet和VGG-16上分别进行了实验,提出的方法最终将深度神经网络整体压缩了30到40倍,并且没有精度损失.实验结果表明通过基于改进聚类的压缩方法,深度神经网络在不损失精度的条件下实现了有效压缩,这使得深度网络在移动端的部署成为了可能. 相似文献
12.
在深度学习中,数据是三大核心要素之一.尤其在某些领域,数据的稀有、人工标注造成大量人力的浪费、数据好坏对产出结果的影响,都显现出数据的重要性.鉴于在动漫领域中,人物的制作需要花费大量的人力和时间,所以从动漫头像出发,基于生成对抗网络,结合编码器、残差网络、解码器,经过编码器改变图像的维度,最后利用解码器将提取到的特征数... 相似文献
15.
人脸图像生成是计算机图形学与计算机视觉领域中的重要研究方向.但在多属性人脸生成问题上,传统模型存在两个不足,一是控制生成人脸图片的属性时,不能有效地保持图片特征;二是现有的条件式生成对抗网络由于数据集应用不灵活,造成在不平衡数据上进行多属性人脸生成时表现不佳.针对这些不足,论文提出基于特征保持的条件生成对抗网络,针对第... 相似文献
16.
针对目前基于生成对抗网络(GAN)的图像修复算法存在修复效果的视觉连续性不佳、网络训练过程中模型崩溃等问题,提出一种基于双判别器的生成对抗网络的修复算法。该方法将WGAN-GP的损失函数引入全局判别器和局部判别器中,并结合改进的上下文内容损失来训练网络模型,修复破损区域。在CelebA数据集以峰值信噪比PSNR和结构相似性SSIM的标准下的实验结果证明,该算法提高了图像修复结果的质量和训练稳定性。 相似文献
17.
深度卷积神经网络在图像分类、目标检测和人脸识别等任务上取得了较好性能,但其在面临对抗攻击时容易发生误判。为了提高卷积神经网络的安全性,针对图像分类中的定向对抗攻击问题,提出一种基于生成对抗网络的对抗样本生成方法。利用类别概率向量重排序函数和生成对抗网络,在待攻击神经网络内部结构未知的前提下对其作对抗攻击。实验结果显示,提出的方法在对样本的扰动不超过5%的前提下,定向对抗攻击的平均成功率较对抗变换网络提高了1.5%,生成对抗样本所需平均时间降低了20%。 相似文献
18.
19.
20.
通常情形下,现有的图像生成模型都采用单次前向传播的方式生成图像,但实际中,画家通常是反复修改后才完成一幅画作的;生成对抗模型(Generative Adversarial Networks,GAN)能生成图像,但却很难训练.在保证生成图像质量的前提下,效仿作画时的不断更新迭代,以提升生成样本多样性并增强样本语义,同时引入Wasserstein距离,提出了Wasserstein图像循环生成对抗网络模型,简称WIRGAN(Wasserstein Image Recurrent Generative Adversarial Networks Model).WIRGAN定义了生成模型和判别模型,其中,生成模型是由一系列结构相同的神经网络模型组成的循环结构,用时间步骤T控制生成模型的循环次数,用于迭代式生成图像,并以最后一个循环结构的生成图像作为整个生成模型的输出;判别模型也由神经网络构建,结合权重剪枝技术,用来判别输入图像是生成的还是真实的.WIRGAN利用Wasserstein距离作为目标函数,将生成模型和判别模型进行博弈对抗训练.另外,由于模型存在难以优化的问题,本文引入了梯度惩罚来解决此类问题,进一步提出了梯度惩罚优化的Wasserstein图像循环生成对抗网络模型(Gradient Penalty Optimized Wasserstein Image Recurrent Generative Adversarial Networks Model,GP-WIRGAN).最后,WIRGAN和GP-WIRGAN在MNIST、CIFAR10、CeUN四个数据集上进行了基础学习能力、模型间GAM自比较、模型内GAM自比较、初始得分比较、图像生成可视化、时间效率比较等6组实验,采用生成对抗矩阵(Generative Adversarial Metric,GAM)和起始分数(Inception Scores)进行评估,结果表明,本文提出的WIRGAN、GP-WIRGAN具有良好的稳定性,可以生成高质量的图像. 相似文献