共查询到19条相似文献,搜索用时 46 毫秒
1.
针对行人再识别中相似性度量误差引起的识别效果较差的问题,提出多置信度重排序的行人再识别算法,通过对再排序过程中测试样本的置信度进行评估,提高行人再识别的准确性.首先对目标样本及测试样本依据深度学习网络ResNet50获得描述特征.然后对目标样本与测试样本之间的相似性进行初始排序,对相似排序得到的样本构建相似样本集合,获得每个类别的聚类中心和样本距离聚类中心的最小、最大、均值距离,设置3个置信度不同的置信区间.最后使用Jaccard距离对目标样本与测试样本的相似度进行重排序.在标准测试数据集上的实验表明文中算法的有效性. 相似文献
2.
目的 由于行人图像受到光照、视角、遮挡和行人姿态等变化的影响,在视觉上容易形成很大的外观差异,对行人再识别造成干扰。为了提高行人再识别的准确性,针对以上问题,提出一种基于多特征融合与独立测度学习的行人再识别算法。方法 首先通过图像增强算法对原始图像进行处理,减少因光照变化产生的影响,然后对处理后的图像进行非均匀分割,同时提取行人图像的HSV、RGS、LAB和YCbCr 4种颜色特征和SILTP(scale invariant local ternary pattern)纹理特征,在基于独立距离测度学习方法下,融合行人的多种特征,学习得到行人图像对的相似度度量函数,最后将行人图像对的相似度进行加权匹配,实现行人再识别。结果 在VIPeR、iLIDS和CUHK01这3个数据集上进行实验,其中Rank1(排名第1的搜索结果即为待查询人的比率)分别达到42.7%、43.6%和43.7%,Rank5(排名前5的搜索结果中包含待查询人的比率)均超过70%,识别率有了显著提高,具有实际应用价值。结论 提出的多特征融合与独立测度学习的行人再识别算法,能够有效表达行人图像信息,且对环境变化具有较强的鲁棒性,有效提高了识别率。 相似文献
3.
行人再识别过程中,由于姿势和光照等因素的变化使不同相机中所得行人的外形具有明显变化,较难提取不变性特征,导致识别率偏低.鉴于此种情况,文中提出基于融合特征的行人再识别方法,提取的特征包括HSV颜色特征、颜色直方图特征及梯度方向直方图特征,行人再识别过程分为训练阶段和识别阶段.在训练阶段,首先对训练图像集中每幅图像进行特征提取,然后利用典型相关分析获得2部相机拍摄同一行人的图像特征之间的相关性,生成相关性矩阵.在识别阶段,首先对参考图像集和测试图像集中每幅图像进行特征提取,然后将各自特征向量利用相关性矩阵进行变换,最后进行相似度度量,得到识别结果.在3个图像库上的实验表明,文中方法可以提高行人再识别的识别率. 相似文献
4.
针对功能性磁共振成像(fMRI)数据高维小样本特性给分类模型带来的过拟合问题,文中基于Softmax回归提出结合L2正则与L1正则的全脑fMRI数据特征选择框架.首先,基于大脑认知的特点,将全脑分成感兴趣区域和非感兴趣区域.然后,使用可以缩小权值系数的L2正则对感兴趣区域建模以选出感兴趣区域的全部体素,使用具有稀疏作用的L1正则对非感兴趣区域建模以选出非感兴趣区域中的激活体素.最后,结合感兴趣区域和非感兴趣区域的体素构成全脑fMRI数据的正则化Softmax回归模型.在Haxby数据集上的实验表明,L2与L1的正则化策略可有效提升全脑分类的准确率. 相似文献
5.
针对行人目标在不同摄像机下外观显著性变化的问题,提出一种基于特征融合及差异矩阵的行人再识别算法。串联融合显著颜色名描述符(SCNCD)和微调的卷积神经网络(FTCNN)特征来描述行人图像,采用K-means算法获取包含典型行人图像的参考集以优化目标与参考身份相对应的重建关系,运用差异矩阵度量(DMMM)算法进行度量学习。在VIPeR和PRID450s行人再识别数据集上的实验结果表明,所提行人再识别算法具有良好的匹配率和有效性。 相似文献
6.
基于多特征子空间与核学习的行人再识别 总被引:4,自引:0,他引:4
行人再识别指的是在无重叠视域多摄像机监控系统中, 匹配不同摄像机视域中的行人目标.针对当前基于距离测度学习的行人再识别算法中存在着特征提取复杂、训练过程复杂和识别效果差的问题, 我们提出一种基于多特征子空间与核学习的行人再识别算法.该算法首先在不同特征子空间中基于核学习的方法得到不同特征子空间中的测度矩阵以及相应的相似度函数, 然后通过比较不同特征子空间中的相似度之和来对行人进行识别.实验结果表明, 本文提出的算法具有较高的识别率, 其中在VIPeR数据集上, RANK1达到了40.7%, 且对光照变化、行人姿态变化、视角变化和遮挡都具有很好的鲁棒性. 相似文献
7.
随着计算机视觉技术的不断发展,行人再识别技术在安防、侦查和智能监控等领域发挥了巨大的作用,成为了当下的研究热点.传统的行人再识别技术聚焦于摄像机采集到的可见光图像这一视觉信息的研究,并且在实验室条件下已经达到了较好的效果,但在光照情况差、目标遮挡、画质模糊等不利条件下,算法的识别率出现了断崖式的下降.如今视觉信息不单单... 相似文献
8.
宋丽丽 《计算机工程与应用》2019,55(20):170-176
行人再识别技术是计算机视觉领域中一个具有挑战性的任务。该任务针对个体的外观变化模式展开研究,特征变化剧烈,存在小样本问题,而通过提出的一种基于迁移学习的度量学习模型,可约束不同数据集样本分布的差异,实现度量模型在不同数据集上的迁移。该算法不仅增强了度量模型训练样本的多样性,提高了分辨能力,同时提升了样本的适应性。最后,通过在iLIDS数据集进行度量模型的预训练,并在VIPeR和CUHK01两个数据集上进行的迁移学习,验证了算法的有效性和准确性。 相似文献
9.
由于现实复杂情况中各种因素的干扰,行人再识别的过程中可能出现识别错误等问题。为了提高行人再识别的准确性,提出了一种基于时空正则化的行人再识别算法。首先,利用ResNet-50网络对输入的视频序列逐帧进行特征提取,将一系列帧级特征输入到时空正则化网络并产生对应的权重分数;然后,对帧级特征使用加权平均得到视频序列级特征,为避免权重分数聚集在一帧,使用帧级正则化来限制帧间差异;最后,通过最小化损失得到最优结果。在DukeMTMC-ReID和MARS数据集中做了大量的测试,实验结果表明,所提方法与Triplet算法相比能够有效提高行人再识别的平均精度(mAP)和准确率,并且对于人体姿势变化、视角变化和相似外观目标的干扰具有出色的性能表现。 相似文献
10.
跨摄像机行人因光照、视角、姿态的差异,会使其外观变化显著,给行人再识别的研究带来严峻挑战。基于多特征融合和距离度量学习技术,提出辨识特征后融合的算法,并将其应用于行人再识别中。首先,对跨摄像机行人样本图像分别提取局部最大出现频次(LOMO)特征和基于显著颜色名称的颜色描述子(SCNCD)特征,表示跨摄像机行人的外观;然后,基于所提取的LOMO和SCNCD特征,分别去训练跨视图二次判别分析(XQDA)距离度量学习模型,分别获取跨摄像机每对行人每个特征优化的距离。最后,应用最小最大标准化距离融合的算法,获取跨摄像机行人最终的距离,用于跨摄像机行人的匹配。在具有挑战的VIPeR和PRID450S两个公开数据集上进行实验,实验结果表明所提出的行人再识别算法有效地提高了行人再识别的准确率。 相似文献
11.
同构行人再识别技术研究基于可见光图像的行人检索问题,但无法完全应对复杂多变真实场景,大量研究工作开始探索基于可见光图像与其它异构数据之间的行人检索问题,即跨模态异构行人再识别.该研究相比同构行人再识别,更具挑战性.文中首先简述跨模态异构行人再识别的概念及与一般行人再识别的区别,再针对文本与图像、图像与视频、跨分辨率图像、红外图像与可见光图像、深度图与可见光图像、素描与可见光图像这6类场景,归纳整理和分析跨模态异构行人再识别的代表性工作、常用数据集及一些算法的性能表现.最后,总结目前整体研究进展,展望未来发展趋势. 相似文献
12.
基于图卷积神经网络的行人重识别方法面临两个问题:1)在对特征映射构图时,图节点表达的语义信息不够显著;2)选择特征块构图时仅依赖特征块间的相对距离,忽略内容相似性.为了解决这两个问题,文中提出融合关系学习网络的行人重识别.利用注意力机制,使用最大注意力模型,使最重要的特征块更显著,赋予其语义信息.融合相似性度量,从距离和内容两方面对特征块进行相似性计算,度量方式更全面.该算法能够综合地选取近邻特征块,为图卷积神经网络提供更好的输入图结构,使图卷积神经网络提取更鲁棒的结构关系特征.在iLIDS-VID、MARS数据集上的实验验证文中网络的有效性. 相似文献
13.
设计多分支网络以提取分集特征已成为行人重识别领域的重要方向之一.由于单分支学习到的特征表达能力有限,所以文中提出基于多分支协作的行人重识别网络.在局部分支、全局分支、全局对比池化分支、关联分支这4个相互协作的分支上进行特征提取,获得强大的分集行人特征表达能力.文中网络可应用于不同的主干网络.实验中考虑OSNet、ResNet作为文中网络的主干网络进行验证.实验表明,文中网络在行人重识别数据集上均取得Start-of-the-art结果. 相似文献
14.
近年来,注意机制在行人重识别任务中效果较优,但是不同类型的注意机制(如空间注意、自注意等)联合使用的效果仍然有待提高.因此,文中首先提出改进型的卷积块注意模型(CBAM-Pro),再提出多类型特征网络模型.对CBAM-Pro与自注意机制的集成提取不同关注域的特征,同时引入不同划分粒度的局部特征,联合进行行人重识别.在现有的通用基准数据集上的实验验证文中模型的有效性与可靠性. 相似文献
15.
针对现有跨模态行人重识别方法忽略行人的局部特征及模态间的相互协同的问题,文中提出基于局部异质协同双路网络的跨模态行人重识别方法.首先,通过双路网络提取不同模态的全局特征进行局部精细化,挖掘行人的结构化局部信息.然后,通过标签和预测信息建立跨模态局部信息之间的关联,进行协同自适应的跨模态融合,使不同模态的特征之间相互补充,获得富有判别力的特征.在RegDB、SYSU-MM01跨模态行人重识别数据集上的实验验证文中方法的有效性. 相似文献
16.
行人重识别旨在跨监控设备下检索出特定的行人目标.由于不同的行人可能具有相似的外观,因此要求行人重识别模型能够捕捉到充足的细粒度特征.本文提出一种融合属性特征的行人重识别的深度网络方法,将行人重识别和属性识别集成在分类网络中,进行端到端的多任务学习.此外,对于每张输入图片,网络自适应地生成对应于每个属性的权重,并将所有属性的特征以加权求和的方式结合起来,与全局特征一起用于行人重识别任务.全局特征关注行人的整体外观,而属性特征关注细节区域,两者相互补充可以对行人进行更全面的描述.在行人重识别的主流数据集DukeMTMC-reID和Market-1501上的实验结果表明了本文方法的有效性,平均精度均值(Mean average precision,mAP)分别达到了74.2%和83.5%,Rank-1值分别达到了87.1%和93.6%.此外,在这两个数据集上的属性识别也得到了比较好的结果. 相似文献
17.
行人重识别旨在跨监控设备下检索出特定的行人目标.由于不同的行人可能具有相似的外观,因此要求行人重识别模型能够捕捉到充足的细粒度特征.本文提出一种融合属性特征的行人重识别的深度网络方法,将行人重识别和属性识别集成在分类网络中,进行端到端的多任务学习.此外,对于每张输入图片,网络自适应地生成对应于每个属性的权重,并将所有属性的特征以加权求和的方式结合起来,与全局特征一起用于行人重识别任务.全局特征关注行人的整体外观,而属性特征关注细节区域,两者相互补充可以对行人进行更全面的描述.在行人重识别的主流数据集DukeMTMC-reID和Market-1501上的实验结果表明了本文方法的有效性,平均精度均值(Mean average precision,mAP)分别达到了74.2%和83.5%,Rank-1值分别达到了87.1%和93.6%.此外,在这两个数据集上的属性识别也得到了比较好的结果. 相似文献
18.
行人外观属性是区分行人差异的重要语义信息。行人属性识别在智能视频监控中有着至关重要的作用,可以帮助我们对目标行人进行快速的筛选和检索。在行人重识别任务中,可以利用属性信息得到精细的特征表达,从而提升行人重识别的效果。文中尝试将行人属性识别与行人重识别相结合,寻找一种提高行人重识别性能的方法,进而提出了一种基于特征定位与融合的行人重识别框架。首先,利用多任务学习的方法将行人重识别与属性识别结合,通过修改卷积步长和使用双池化来提升网络模型的性能。其次,为了提高属性特征的表达能力,设计了基于注意力机制的平行空间通道注意力模块,它不仅可以在特征图上定位属性的空间位置,而且还可以有效地挖掘与属性关联度较高的通道特征,同时采用多组平行分支结构减小误差,进一步提高网络模型的性能。最后,利用卷积神经网络设计特征融合模块,将属性特征与行人身份特征进行有效融合,以获得更具鲁棒性和表达力的行人特征。实验在两个常用的行人重识别数据集DukeMTMC-reID和Market-1501上进行,结果表明,所提方法在现有的行人重识别方法中处于领先水平。 相似文献
19.
基于深度学习的行人重识别研究进展 总被引:7,自引:0,他引:7
行人重识别是计算机视觉领域近年来非常热的一个研究课题,可以被视为图像检索的一个子问题,其目标是给定一个监控行人图像检索跨设备下的该行人图像.传统的方法依赖手工特征,不能适应数据量很大的复杂环境.近年来随着深度学习的发展,大量基于深度学习的行人重识别方法被提出.本文先简单介绍了该问题的定义及传统方法的局限,并列举了一些适用于深度学习方法的行人重识别数据集.此外我们详细地总结了一些比较典型的基于深度学习的行人重识别方法,并比较了部分算法在Market1501数据集上的性能表现.最后我们对该问题未来的研究方向做了一个展望. 相似文献