共查询到20条相似文献,搜索用时 15 毫秒
1.
基于时序数据建模的长短时神经网络(LSTM)可用于预测类问题。现实场景中,LSTM预测精度往往与输入序列长度相关,有效的历史信息会被新输入的数据淹没。针对此问题,提出在LSTM节点中构建强化门实现对遗忘信息的提取,并与记忆信息按比例选取、融合、输入记忆单元,增加学习过程中的梯度传导能力,使网络对相对较远的信息保持敏感以提升记忆能力。实验采用工业故障数据,当序列长度超过100时,具有强化门机制的改进模型预测误差低于其他LSTM模型。预测精度的差距随序列增加而增大,当序列长度增至200时,改进模型的预测误差(RMSE/MAE)较原模型分别降低了26.98%与35.85%。 相似文献
2.
视频可以看作是连续的视频帧图像组成的序列,视频彩色化的实质是对图像进行彩色化处理,但由于视频的长期序列性,若直接将现有的图像着色方法应用到视频彩色化上极易产生抖动或闪烁现象。针对这个问题,提出一种结合长短时记忆(LSTM)和卷积神经网络(CNN)的混合神经网络模型用于视频的着色。该方法用CNN提取视频帧的语义特征,同时使用LSTM单元学习灰度视频的时序信息,保证视频的时空一致性,然后融合局部语义特征和时序特征,生成最终的彩色视频帧序列。通过对实验结果的定量分析和用户研究表明,该方法在视频彩色化上实现了较好的效果。 相似文献
3.
针对视频帧预测中难以准确预测空间结构信息细节的问题,通过对卷积长短时记忆(LSTM)神经网络的改进,提出了一种深度卷积长短时神经网络的方法。首先,将输入序列图像输入到两个不同通道的深度卷积LSTM网络组成的编码网络中,由编码网络学习输入序列图像的位置信息变化特征和空间结构信息变化特征;然后,将学习到的变化特征输入到与编码网络通道数对应的解码网络中,由解码网络输出预测的下一张图;最后,将这张图输入回解码网络中,预测接下来的一张图,循环预先设定的次后输出全部的预测图。与卷积LSTM神经网络相比,在Moving-MNIST数据集上的实验中,相同训练步数下所提方法不仅保留了位置信息预测准确的特点,而且空间结构信息细节表征能力更强。同时,将卷积门控循环单元(GRU)神经网络的卷积层加深后,该方法在空间结构信息细节表征上也取得了提升,检验了该方法思想的通用性。 相似文献
4.
鉴于不同类型氨基酸的相互作用对蛋白质结构预测的影响不同,文中融合卷积神经网络和长短时记忆神经网络模型,提出卷积长短时记忆神经网络,并应用到蛋白质8类二级结构的预测中.首先基于氨基酸序列的类别信息和氨基酸结构的进化信息表示蛋白质序列,并采用卷积提取氨基酸残基之间的局部相关特征,然后利用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用,最后将提取的蛋白质的局部相关特征和远程相互作用用于蛋白质8类二级结构的预测.实验表明,相比基准方法,文中模型提高8类二级结构预测的精度,并具有良好的可扩展性. 相似文献
5.
短期铁路客运需求量的实时精准预测可以为实时调整客运服务结构提供依据.铁路旅客流量数据具有时变性、非线性和随机波动性等特点,传统的预测模型无法精准的预测短期内的客流量.本文提出一种基于小波包分解与长短时记忆融合的深度学习预测模型(WPA-LSTM),首先用小波包分解将原始客运量时间序列分解重构成多个不同尺度的低频和高频序列,然后分别针对各个子序列进行LSTM模型训练和预测,最后将各子序列的预测值叠加作为WPA-LSTM模型的输出.采用某高铁367天的日旅客流量数据对模型进行实验验证,并与季节性模型和基于经验模态的长短时记忆融合模型进行对比,实验结果表明,WPA-LSTM模型可有效提高铁路旅客流量预测的精度. 相似文献
6.
7.
针对传统手足口病(HFMD)发病趋势预测算法预测精度不高、未结合其他影响因素、预测时间较短等问题,提出结合气象因素使用长短时记忆(LSTM)网络进行长期预测的方法。首先,将发病序列通过滑动窗口的方式转化为网络的输入和输出;然后采用LSTM网络进行数据建模和预测,并使用迭代预测的方式获得较长期的预测结果;最后在网络中增加温度和湿度变量,比较这些变量对预测结果的影响。实验结果表明,加入气象因素能够提高模型的预测精度,所提模型在济南市数据集上的平均绝对误差(MAE)为74.9,在广州市数据集上的MAE为427.7,相较于常用的季节性差分自回归移动平均(SARIMA)模型和支持向量回归(SVR)模型,该模型的预测准确率更高。可见所提模型是HFMD发病趋势预测的一种有效的实验方法。 相似文献
8.
由于循环神经网络拥有复杂的模型结构,使训练模型达到最优变得困难。因此,提出一种最小窥视孔长短时记忆模型,它只有一个唯一门来更新信息,拥有两个网络层,通过减少一定的模型参数降低模型训练的难度,提高模型性能。实验结果表明,在不同数据集上,该模型性能高于长短期记忆模型,部分高于门循环单元模型,在参数个数、运行时间方面,其远小于长短期记忆模型以及门循环单元模型。 相似文献
9.
针对传统基于形态特征的心电检测算法存在特征提取不准确和高复杂性等问题,提出了一种多层的长短时记忆(LSTM)神经网络结构。结合传统LSTM模型在时序数据处理上的优势,该模型增加了反向和深度计算,避免了人工提取波形特征,提高了网络的学习能力。通过给定心拍序列和分类标签进行监督学习,然后实现对未知心拍的心律失常检测。通过对MIT-BIH数据库中的心律失常数据集进行实验验证,模型的总体准确率为98.34%。相比支持向量机(SVM),该模型的准确率和F1值均有提高。 相似文献
10.
高毅 《自动化与仪器仪表》2020,(2):128-131
在自然语言处理领域,分词是非拉丁语系语言处理的首要任务。而在中文自然语言处理中,常见的是针对现代汉语进行分词处理,对古汉语涉及得较少。针对这一问题,设计针对古汉语的分词系统。系统采用流行的深度学习方法,对中文首先进行分词,采用长短时神经网络LSTM提取序列特征;之后采用Softmax进行分类,设计针对古汉语分词的长短时神经网络。在测试中取得了理想的预期,基本可以满足设计需求。该系统一方面提高了教学的效率,降低了古汉语断句的难点;另一方面,在一定程度上提升了学习的兴趣。 相似文献
11.
可靠的交通流量预测在交通管理和公共安全方面具有重要意义.然而,这也是一件具有挑战性的任务,因为它易受到空间依赖性、时间依赖性以及一些额外因素(天气和突发事件等)的影响.现有的大部分工作只考虑了交通数据的部分属性,导致建模不充分,预测性能不理想.因此,提出了一种新的端到端的深度学习模型——时空注意力卷积长短期记忆网络(ST-AttConvLSTM),用于交通流量的预测.ST-AttConvLSTM将整个模型分为三个分支进行建模,每个分支经过残差神经网络提取局部的空间特征,同时进一步结合天气等外部因素,再利用卷积长短时记忆网络(ConvLSTM)和注意力模型两种组件来挖掘流量的潜在规律,捕获时空维度上数据的关联性.使用北京市和纽约市两个真实的移动数据集来评估提出的方法,实验结果表明,该方法比知名的基准方法有更高的预测精度. 相似文献
12.
近年来,越来越多的人加入到股票投资的队伍当中,金融学家和社会学家也将股票市场的发展作为衡量一个国家或者地区发展水平的一项重要标准.对于股民来讲,若可以准确预测股价变化,就可以及时采取措施达到较高的收益.为此,建立一种基于CBAM注意力机制的神经网络模型实现对未来股票价格的预测.通过与建立的其他模型预测结果对比发现,基于... 相似文献
14.
15.
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,实验结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。 相似文献
16.
近年来,深度学习越来越广泛地应用于自然语言处理领域,人们提出了诸如循环神经网络(RNN)等模型来构建文本表达并解决文本分类等任务。长短时记忆(long short term memory,LSTM)是一种具有特别神经元结构的RNN。LSTM的输入是句子的单词序列,模型对单词序列进行扫描并最终得到整个句子的表达。然而,常用的做法是只把LSTM在扫描完整个句子时得到的表达输入到分类器中,而忽略了扫描过程中生成的中间表达。这种做法不能高效地提取一些局部的文本特征,而这些特征往往对决定文档的类别非常重要。为了解决这个问题,该文提出局部化双向LSTM模型,包括MaxBiLSTM和ConvBiLSTM。MaxBiLSTM直接对双向LSTM的中间表达进行max pooling。ConvBiLSTM对双向LSTM的中间表达先卷积再进行max pooling。在两个公开的文本分类数据集上进行了实验。结果表明,局部化双向LSTM尤其是ConvBiLSTM相对于LSTM有明显的效果提升,并取得了目前的最优结果。 相似文献
17.
18.
基于长短时记忆网络的人体姿态检测方法 总被引:1,自引:0,他引:1
针对在循环神经网络(RNN)网络结构下较为遥远的历史信号无法传递至当前时刻的问题,长短时记忆(LSTM)网络作为RNN的一种变体被提出,在继承RNN对时间序列优秀的记忆能力的前提下,LSTM克服了这种时间序列的长期依赖问题,并在自然语言处理与语音识别领域有较好的表现。对于人体行为动作中也存在作为时间序列的长期依赖问题与使用传统滑窗算法采集数据时造成的无法实时检测的问题,将LSTM扩展应用到人体姿态检测,提出了基于LSTM的人体姿态检测方法。通过目前智能手机中一般都带有的加速度传感器、陀螺仪、气压计和方向传感器实时采集的时序数据,制作了包含3336条带有人工标注数据的人体姿态数据集,对行走、奔跑、上楼梯、下楼梯和平静五种日常持续性行为姿态与跌倒、起立、坐下和跳跃这四个突发行为姿态进行预测分类。对比LSTM网络与该研究领域内常用的浅层学习算法、深度学习全连接神经网络与卷积神经网络,实验结果表明,所提方法使用端对端的深度学习的方法相比基于所制作数据集的人体姿态检测算法模型的正确率提高了4.49个百分点,验证了该网络结构的泛化能力且更适合姿态检测。 相似文献
19.
风能作为一种绿色能源在我国能源结构中发挥着越来越重要的作用;风电机组的滚动轴承作为传动系统的重要组成部分,是其主要故障部件之一;随着风电规模的不断增长,及时地发现风电机组滚动轴承的故障对风电场安全稳定运行具有重要意义;针对传统回归神经网络存在的梯度消失问题,提出了利用长短时记忆神经网络对风电机组滚动轴承进行故障诊断的模型;首先,利用小波包变换对风电机组滚动轴承振动信号进行处理,提取其特征向量,将其作为长短时神经网络的输入,从而诊断出风电机组滚动轴承的3种常见故障;通过算例分析,结果表明所提出的方法能够有效地对风电机组的滚动轴承进行故障诊断,并且在故障特征量差异不明显的情况下长短时记忆神经网络仍具有良好的故障诊断性能,说明了该方法的可行性和有效性。 相似文献
20.
针对高光谱数据众多波段间的多重共线性导致的维数灾难问题,为提升葡萄叶面积指数(leaf area index,LAI)的估算精度,提出一种基于敏感波段选择的长短时记忆神经网络(long short term memory,LSTM)估算模型。首先,采用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,以消除光谱波段间的多重共线性,降低光谱维度,提取葡萄LAI敏感波段;其次,采用TensorFlow深度学习框架构建LSTM神经网络模型。应用于陕西泾阳葡萄冠层光谱的LAI估算。结果表明:利用敏感波段构建的LSTM模型各项指标均优于偏最小二乘和支持向量机,其决定系数(R~2)、均方根误差(RMSE)和希尔不等系数(TIC)分别为0.963 5、0.074 5和0.025 4;基于原始光谱的LSTM模型的R~2、RMSE和TIC分别为0.881 0、0.117 0和0.039 8。UVE波段优选能够提升LSTM神经网络模型估算葡萄LAI的精度,对其他作物理化参量反演具有一定的指导意义。 相似文献