共查询到19条相似文献,搜索用时 62 毫秒
1.
基于极限学习机理论, 将主成分分析技术与ELM特征映射相结合, 提出一种基于主成分分析的压缩隐空间构建新方法. 结合多层神经网络学习方法对隐空间进行多层融合, 进一步提出了堆叠隐空间模糊C 均值聚类算法,从而提高对非线性数据的学习能力. 实验结果表明, 所提出算法在处理复杂非线性数据时更加高效、稳定, 同时克服了模糊聚类算法对模糊指数的敏感性问题.
相似文献2.
基于模糊C均值(FCM)和局部自适应聚类(LAC)提出一种针对高维数据的联机局部自适应模糊C均值聚类算法(OLAFCM).OLAFCM通过为各类属性分别赋以相应的局部权重,使各类属性分布在不同属性组合的张量子空间内,从而有效降低采用全局降维方法造成的信息损失,同时适合聚类数据流.最后,在人工模拟和真实数据集上验证OLAFCM比之现有基于全局降维的划分联机聚类算法具有更好的性能. 相似文献
3.
有监督的局部保留投影降维算法 总被引:7,自引:0,他引:7
针对局部保留投影(LPP)的非监督本质,提出一种称为有监督的局部保留算法(SLPP)的线性降维方法,它同时考虑类间分离性以及LPP中的局部保留特性.实验结果表明SLPP算法较其他算法优越.线性的SLPP算法还可通过使用核方法扩展到非线性的情况. 相似文献
4.
极限学习机(Extreme learning machine, ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means, WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means,NKWFLICM)进行聚类。 实验结果表明 ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效, 同时克服了模糊聚类算法对模糊指数的敏感性问题。 相似文献
5.
针对高维数据容易对噪声敏感及容易造成维数灾难问题,文中提出基于随机子空间的局部鉴别投影算法(RSLDP).利用随机子空间方法对高维的原始数据进行特征选择,在生成的低维特征子空间构造近邻图,降低噪声影响.RSLDP通过最大化局部类间加权散度和最小化局部类内加权散度,同时最小化样本的总体局部散度,改进局部最大间距鉴别嵌入算法,较好刻画样本与其类间类内近邻中心点的关系,有利于鉴别特征的提取.在CMU PIE和AR这2个人脸数据库上的实验表明文中算法的有效性. 相似文献
6.
基于空间邻域加权的模糊C-均值聚类及其应用研究* 总被引:2,自引:0,他引:2
针对模糊C-均值聚类法用于图像聚类时仅利用了像素的灰度信息,而忽视空间位置信息,导致在噪声区域和边界处有误分类现象,提出一种新的基于空间邻域加权的模糊C-均值图像聚类法。首先,定义了一个空间邻域信息函数,该函数能够有力抑制噪声点,同时能够很好保留边界的特性;其次,设计了具有空间约束的样本邻域信息加权隶属度矩阵;最后,将该方法应用于人工合成图像和模拟MR脑图像的聚类。实验结果表明,该方法能够获得较好的聚类效果,同时具有较强的抑制噪声的能力。 相似文献
7.
针对传统的模糊C均值聚类算法在进行图像分割时对孤立点、噪声点敏感性较强,聚类耗时随图像变大而快速增长等缺陷,基于临近元素空间距离的模糊C均值聚类算法即SFGFCM算法,采用核化的空间距离公式,计算出空间临近像素与考察像素的相似度Sij,然后用邻近像素灰度加权和计算出邻近信息制约图像,并进一步在邻近信息制约图像的灰度级统计的基础上进行聚类。该算法考察了临近像素灰度和位置等信息,并且它们之间取得了很好的平衡;不仅表现出较强的鲁棒性且很好地保留了原图像边缘等细节信息,提高了聚类精度,同时大大缩短了大幅图像的聚类时间。通过在合成图像、医学图像及自然图像上的大量实验,与传统算法对比该算法聚类性能明显提高,在图像分割上体现出了较好的分割效果。 相似文献
8.
Mean shift 模糊C 均值聚类图像分割算法 总被引:1,自引:0,他引:1
针对传统模糊C均值(FCM)聚类算法对结构复杂图像分割效果不理想且算法执行效率较低的缺陷,提出一种融合均值平移(mean shift)的FCM聚类算法.利用mean shift算法将图像分成若干同质区域,将此区域视为新的节点;通过图像局部信息熵描述新节点的空间和灰度特征;采用能较好模拟人眼非线性视觉响应的指数函数进行相似性测度.实验结果表明,对于复杂背景图像和含噪声图像,所提出的算法在目标提取效果和执行效率上具有较强的鲁棒性. 相似文献
9.
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
10.
11.
快速广义模糊C均值聚类(FGFCM)在对高噪声图像进行聚类分割时,噪声容易导致聚类中心发生偏移,影响图像分割结果.为此,文中提出基于自适应滤波的快速广义模糊C均值聚类算法,用于图像分割.首先根据非局部像素的噪声概率自适应确定参数平衡因子,更准确地反映图像包含的空间结构信息.然后利用该平衡因子有效结合FGFCM中的线性加权和滤波图像与原始图像的中值滤波图像,由于得到的自适应滤波图像根据图像中像素为噪声的概率自适应确定滤波程度,因此可以提高算法对噪声的动态抑制能力.实验表明,相比模糊C均值聚类和FGFCM,文中算法在对噪声含量较高的图像进行聚类分割时,可以得到更准确的结果. 相似文献
12.
在进行降维时数据集合的多样性要求降维算法求解问题具有灵活性。为此,利用加入指数 来调节局部保持映射算法的约束条件,通过实验观察该指数的引入对降维以及识别率的影响,并总结指数 的范围和设计经验。实验结果表明,指数 可以影响降维效果,使维数降得更低,通过调节提高人脸识别率,在加入高斯白噪声后通过调节指数p也可改善识别的效果。 相似文献
13.
14.
具有局部结构保留性质的PCA改进算法 总被引:1,自引:0,他引:1
保局投影(LPP)是一种局部结构保留算法,它使得每个数据点和它的近邻点在投影空间中尽可能地保持相近.结合LPP的几何思想,本文提出一种具有局部结构保留特性的PCA改进算法——保局PCA(LP-PCA).该算法通过构造数据集的邻接图及其补图,对近邻点和非近邻点采取不同的处理方式.在获得数据集全局结构的同时,可有效保留数据集的局部结构.在模拟数据集和现实数据集上进行实验,实验结果验证该算法的有效性. 相似文献
15.
16.
17.
杨荣芳 《电脑与微电子技术》2010,(10):19-22
通常,人脸图像能够看作是嵌入到高维空间中的低维流形的点的集合。流形学习被用于很多降维方法中,局部保持投影(LPP)便是其中的一种。针对局部保持投影方法进行了研究,将局部保持投影算法融入到超分辨率方法中,并将其结合到人脸图像的复原上。介绍现有的基于LPP的人脸图像的超分辨率算法。 相似文献
18.
19.
基于局部保持投影的鉴别最大间距准则 总被引:3,自引:0,他引:3
提出一种基于流形学习的特征提取方法——鉴别最大间距准则。该方法采用线性投影,保留最优的局部和全局信息数据集。试图找到具有最好鉴别能力的原始信息,使类间离散度最大的同时类内离散尽可能的小。该方法在识别率上比其它方法都有较大提高,通过在YALE和JAFFE人脸库上的实验验证该方法的有效性。 相似文献