首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《煤》2016,(9)
为了研究工作面长度及动态压差与采空区自燃氧化带分布的关系,在GAMBIT上,建立了工作面长度分别为60 m和90 m的采空区物理模型;利用FLUENT软件,计算了6个不同工作面压差下的采空区渗流流动,得到12个工况下的渗流流场。结果表明:沿工作面长度方向,自燃氧化带上限风速、下限风速和中值风速的等值线,呈现为"鱼背"型曲线;随着工作面压差增大,自燃氧化带上限风速的"鱼背"型曲线向采空区深部移动,且该带范围略微变宽;随着工作面长度增加,自燃氧化带上限风速"鱼背"型曲线向采空区深部移动,且该带范围显著变宽。研究结果对防治采空区煤炭自燃有指导作用。  相似文献   

2.
《煤矿安全》2020,(2):188-191
为研究"两进一回"通风工作面采空区煤自燃区域分布规律,模拟分析了塔山煤矿8301工作面回采期间不同工况下采空区氧气浓度,确定了煤自燃危险区域并提出相应防灭火措施。结果表明:"两进一回"通风工作面采空区煤自燃危险区域较大,自燃带在回采长度为150 m时达到96 m;注氮可大幅度改变采空区内自燃"三带"分布,减小采空区煤自燃危险区域。针对"两进一回"通风工作面,应考虑在采空区两侧注氮;增加风量可使自燃带边界向采空区深部延伸,且加大其前端距工作面的距离。  相似文献   

3.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

4.
为提高矿井防治采空区遗煤自燃的能力,文章探究了不同供风量对自燃危险性及最低安全推进速度的影响。以雁南矿I0130101综放工作面为研究对象,由束管监测得到采空区气体体积分数参数,通过封闭耗氧实验测得采空区遗煤不同氧气体积分数下连续的耗氧速度,分析确定其窒息(临界)氧气体积分数。利用FLUENT软件通过编写采空区遗煤耗氧速率的UDF控制程序,对该采空区流场进行不同风量的仿真模拟,得到不同的自燃氧化带宽度。结果表明:工作面风量1 200 m3/min时(实际风量),自燃氧化带宽度120 m,最低安全推进速度2.60 m/d,采空区自燃危险程度低;随着工作面供风量的增加,该工作面采空区自燃氧化带的边界向采空区深部移动且宽度增大、最低安全推进速度也逐渐加大,与风量近似呈现出线性关系,自燃危险程度增加。  相似文献   

5.
张增辉 《煤矿安全》2023,(12):73-79
为分析不同自燃特性缓倾斜煤层工作面下行通风时采空区内具有自燃危险可能的区域的分布特征,建立了倾斜采空区的渗流模型,依据该模型利用CFD仿真得到了不同火源时(模拟采空区遗煤不同的自燃性强弱)下行通风采空区内氧气和温度场的分布特征;结合保德煤矿81309工作面现场观测的采空区不同区域的O2体积分数的数据对仿真结果进行验证。结果表明:随着设置的热源强度(采空区遗煤自燃倾向性)的提高,采空区火风压作用增强,下行通风时的采空区内进、回风侧氧化带宽度差值在逐渐减小。实测得出的进、回风侧及工作面中部对应的采空区内窒息带临界位置分别距工作面200、290、175 m,与火源功率65 W/m2时的仿真结果较为吻合,表明所建立的模型较为准确,可用于倾斜易自燃煤层工作面自燃分布的研究。  相似文献   

6.
针对四台煤矿404盘区8403工作面调压通风条件下的复合采空区自燃与瓦斯协同防治问题,采用数值模拟手段研究了不同调压参数下的复合采空区漏风、氧气、瓦斯分布特征与变化规律,以漏入采空区的新鲜风流不导致遗煤自燃和涌入工作面的瓦斯气体不超限作为调压的上、下限指标,确定合理的调压界限。结果表明:复合采空区漏风量随工作面风压提高而线性增加,瓦斯被漏风稀释并压入采空区深部,氧气分布范围不断扩大,回风侧氧气分布的增加幅度明显高于进风侧;增压80 Pa时,下层采空区散热带与氧化带宽度的增幅分别为56.25%、22.5%,上层采空区氧化带宽度增幅55.56%;以60~80 Pa作为工作面的最佳调压区间,可保障上隅角瓦斯体积分数降到0.8%以下,同时漏入复合采空区新鲜风流不引起遗煤自燃。  相似文献   

7.
为了防止柳塔煤矿12201综放工作面在推进过程中发生采空区遗煤自燃,采用COMSOL Multiphysics模拟软件研究了不同注氮量条件下采空区氧化自燃带的分布规律。研究结果表明:随着注氮量的增大,氧化自燃带的起始位置沿着工作面方向移动,但整体受注氮量的影响不大,氧化自燃带的终止位置受注氮影响较大,明显向工作面方向移动,导致氧化自燃带的宽度逐渐减小;注氮量与氧化自燃带宽度近似满足幂指数关系,经计算得出最佳注氮量为860 m3/h,此时的氧化自燃带宽度为55 m。  相似文献   

8.
采空区氧化自燃带宽度与工作面推进速度关系的数值模拟   总被引:1,自引:1,他引:0  
基于采空区渗流方程和多孔介质动量方程,应用FLUENT软件模拟了采空区漏风风速变化情况,结合采空区自燃"三带"划分标准,得出采空区氧化自燃带宽度与工作面推进速度的关系:随着工作面推进速度提高,进风侧、回风侧、工作面中部氧化自燃带与工作面距离都将增大;工作面中部氧化自燃带与工作面距离增幅较大,进风侧、回风侧氧化自燃带与工作面距离增幅较小。  相似文献   

9.
为了更有针对性地对灵新煤矿16号煤层051608综采面采空区煤自燃风险进行早期预防,采用实验与现场相结合的方式,通过物理相似模拟实验分析得到051608工作面采空区遗煤自燃极限参数,同时现场观测研究051608工作面采空区自燃“三带”分布特征。研究结果表明,漏风风流从进风侧采空区流向回风侧,氧气浓度进风侧随埋入深度增大衰减较慢,且高氧气浓度的范围大,随着埋入采空区距离增大氧气浓度逐渐降低。判定得到051608工作面采空区进风侧和回风侧氧化升温带范围分别为20~90 m和13~65 m,计算得到预防煤自燃最小安全推进速度为2.39 m/d。研究结果为合理确定防灭火工艺提供了依据,能够保障工作面安全回采。  相似文献   

10.
《煤炭技术》2016,(3):168-170
采用FLUENT软件对2341(3)工作面采空区漏风进行数值模拟,找出采空区自燃"三带"分布的影响因素及规律。现场测定氧浓度,得出2341(3)工作面采空区自燃"三带"宽度:进风侧氧化带范围24.7~45.8 m,回风侧氧化带范围10.8~32 m。  相似文献   

11.
针对塔山煤矿8204-2工作面上方地形复杂、只能在回采起点集中布置钻孔抽采瓦斯的特殊情况,利用数值模拟软件研究分析回采期间不同回采长度和不同注氮量下采空区氧气摩尔浓度分布情况,确定该特殊情况下采空区自燃"三带"和煤自燃危险区域。结果表明:远距离抽采瓦斯使煤自燃危险区域变大;随着回采长度的增长,自燃带逐渐变宽;当回采长度为50 m时,自燃带宽度增宽速率突然变大,进风侧自燃带变宽幅度与回采长度变长幅度比例比回采长度为30~50 m时高出180%,回风侧相应宽度则高出140%,遗煤自燃危险性变大;注氮可大幅度减小采空区煤自燃危险区域。  相似文献   

12.
针对防灭火均压系统很难确保均压区域有稳定均压效果的情况,研究了局部通风机-调节风窗防灭火均压系统,研究表明防灭火均压系统主要受自然风压、摩擦风阻、工作面密闭情况、采空区内气体含量、火风压和火势发展程度影响。通过对各种影响因素的定性分析,得出采空区内外压差随时间变化的函数,并总结出了防灭火均压系统的调节方法:若采空区内外压差大于某一值,则采空区漏风对遗煤自燃会产生较大的影响,必须对灭火均压系统进行调节来降低采空区内外压差。最后应用该方法成功启封了来叶沟煤矿6-201综放工作面。  相似文献   

13.
为了解决人工自燃"三带"测点布置的空间和时间局限性,依托KJ428矿用分布式激光火情监测系统、束管维护技术、测点位置标记技术和"三带"可视化曲线绘制技术,实现自燃"三带"的动态和自动化分析。利用KJ428矿用分布式激光火情监测系统,得到31202采空区回风侧各测点的温度及各种气体浓度大小,根据其中氧气浓度大小可自动得出31202采空区回风侧散热带、氧化带和窒息带范围分别为:采面后方0~60 m、采面后方60~130 m和采面后方130 m至采空区深部,同时随着各测点监测数据的变化,可观测采空区自燃"三带"范围的变化规律。  相似文献   

14.
李会兵 《煤》2021,30(1):14-16
针对王庄煤业3801工作面采空区遗煤自燃发火防治,通过理论分析确定使用O 2作为煤自燃预报指标气体来判断采空区自燃情况,根据现场监测结果确定了3801工作面采空区自燃三带分布范围。进风侧:0~20 m为散热带,20~125 m为自燃带,大于125 m为窒息带;回风侧:0~10 m为散热带,10~60 m为自燃带,大于60 m为窒息带。并计算出了工作面最小安全推进度为1.1 m/d。该研究结果为矿井防灭火工作提供了科学依据。  相似文献   

15.
王俊峰  周斌  安帮  唐一博 《煤炭学报》2018,43(Z1):178-184
运用采空区束管监测,得出采空区自燃危险区域指标气体分布情况及流场气体运移规律。在此基础上对工作面采空区气体流场进行三维稳态数学建模,确定了采空区氧体积分数分布及自燃危险区域范围,同时应用同位素测氡技术探测地表氡异常区域进行验证,形成井下监测-计算机模拟-地表验证“三位一体”的采空区自燃危险区域预测的理论体系。将此方法成功应用于黄白茨矿1293工作面采空区,结果表明在当前工作面通风和回采进度条件下,采空区氧气带呈不规则“O”型分布,采空区煤自燃危险区域(氧气体积分数10%~15%)呈“U”型分布在距离工作面进风巷100~450 m,回风巷70~250 m,中部距离工作面50~140 m处。研究成果为采空区煤自燃区域精准探测提供了借鉴。  相似文献   

16.
为防止田陈煤矿7106综放工作面停采撤架期间因采空区遗煤多、漏风复杂引起煤炭自燃,根据撤架巷道条件及位置关系,通过对比分析,采取了局部通风机通风和向垮落区注水的措施防止煤炭自燃。采取上述措施后,有效减小了终采线漏风区域,防止了撤架期间的煤炭自燃升温,进而形成了由终采线注水、均压、监测和安全保障构成的防灭火系统,保证了撤架工作的顺利完成  相似文献   

17.
针对豹子沟煤矿10101综放工作面开采,分析探讨可能引起采空区自然发火火灾危险因素;应用气相色谱分析仪和束管取气的方法测定该工作面采空区自燃“三带”分布数据;采用现场实测方法和采用数值模拟法分析采空区自燃“三带”规律,经比照,得出不同风量条件下采空区自燃“三带”分布特征,最终确定范围为:散热带小于27.2 m,氧化自燃带27.2~74.5 m,窒息带大于74.5 m;结合煤层最短自然发火期,确定工作面的最小安全推进速度为1.84米/天。  相似文献   

18.
王伟东  王伟  李鹏  王刚 《煤矿安全》2020,(1):181-186
以五虎山煤矿010908工作面为背景,采用理论分析、数值模拟和现场实测等手段对浅埋深高瓦斯工作面瓦斯抽放对采空区自燃"三带"影响进行研究。研究结果表明:当瓦斯绝对涌出量与采空区漏风量处于均衡状态时,此时瓦斯对煤自燃将出现明显的耦合影响;当采空区漏风量小于瓦斯绝对涌出量时,采空区遗煤自燃将受到阻碍;与之相反,当漏风量大于瓦斯涌出量时,采空区遗煤自燃受瓦斯涌出量的影响较小;高位钻孔与工作面距离越远,采空区内部的漏风路径也越长,采空区氧化带、窒息带所处的区域越向采空区深部扩大,但靠近工作面一侧的氧化带范围并没有出现明显变化。  相似文献   

19.
针对新维煤矿8104综采工作面开采煤层含硫量较高且局部富集、采空区遗煤多、距离上层采空区近等客观情况,研究了其采空区煤自燃危险区域分布规律。实施过程中,采用束管监测系统实时测试采空区气体场分布,在此基础上以O2浓度变化作为主要标志、温度变化为辅助标志划分了8104综采工作面采空区的"三带"范围,并采用数值模拟方式与现场实测结果进行了对比分析,结果表明实测与数值模拟结果基本一致。最终确定了该综采工作面采空区自燃带范围:进风侧为40.5~95.5 m,回风侧为15.3~59.7 m。  相似文献   

20.
安朝峰 《煤矿安全》2020,(4):152-156
高位巷抽采负压为影响采空区瓦斯及煤自燃复合灾害防治的关键因素之一,为确定合理的抽采负压,结合某矿401102综放工作面瓦斯易超限及自然发火实际情况,采用ANSYS数值模拟及现场实测方法,研究高位巷抽采负压对瓦斯抽采效果及煤自燃"三带"分布的影响,并进行工程实践。结果表明:抽采负压对采空区复合灾害防治有显著影响,负压由0.5 kPa增至3.5 kPa,瓦斯抽采纯量增加21.02 m^3/min,相比"U"型通风,高位巷负压3 kPa时,氧化升温带宽进风侧扩大17 m,中部与回风侧分别缩小14 m和11 m;提出了合理抽采负压范围的界定方法,确定负压波动区间为[0.951 6,2.558],最佳点为2.558 k Pa。煤层采用高位巷抽采方式时,合理设定抽采负压能够保证采空区瓦斯及煤自燃灾害的耦合防治。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号