首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
采用透射电镜(TEM)、扫描电镜(SEM)、室温拉伸等手段,研究了650~730 ℃温轧温度对0.46%C中碳钢的组织演变及力学性能的影响。结果表明,经90%的轧制变形,试验钢铁素体晶内引入大量位错,渗碳体片层产生应力集中导致层片状渗碳体弯曲、扭折、碎化为颗粒状。随着温轧温度的降低,位错增殖明显,渗碳体球化率增加,分布越来越均匀,抗拉强度和伸长率整体上升。当温轧温度为650 ℃时,渗碳体球化最好,抗拉强度877 MPa,断后伸长率16.0%,综合力学性能最好。拉伸断口结果表明,随着温轧温度的降低,试验钢的断裂机制由韧-脆混合断裂转变为韧性断裂,塑性提高。  相似文献   

2.
利用扫描电镜(SEM)和电子背散射衍射技术(EBSD)对马氏体以及铁素体+珠光体组织中碳钢在550℃双向温轧后的组织演变进行了研究。结果表明:淬火马氏体温轧后渗碳体颗粒在铁素体基体上分布比较均匀,小角度晶界所占比例很高,4道次轧制后亚晶粒尺寸约为1.35μm,部分铁素体晶粒发生动态再结晶,形成大角度晶界包围的细小的等轴晶粒;而铁素体+珠光体作为轧前组织,温轧后渗碳体颗粒和亚晶粒主要集中在原珠光体区,4道次后平均亚晶粒尺寸约为1.79μm,等轴细小的铁素体晶粒主要在原珠光体与铁素体边界分布。双向温轧是淬火马氏体获得碳化物颗粒与超细晶铁素体均匀混合组织的有效方法。  相似文献   

3.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)及万能拉伸机等研究了不同温轧温度及累积压下率对双辊铸轧6061铝合金板材组织性能的影响。结果表明,6061铝合金铸轧板组织主要由耐热相Al0.7Fe3Si0.3、Al9Fe0.84Mn2.16Si及少量强化相Mg2Si组成。合金中第二相随温轧道次递增逐渐由网格状、片状转变为沿轧制方向的线条状,最终变为细小的颗粒状。温轧后,有新的析出相Al0.5Fe3Si0.5产生,且Mg2Si相的数量增多。6061铝合金铸轧板较为适宜的温轧工艺为:370℃轧制+80%累积压下率,此时铸轧板热处理后的屈服强度、抗拉强度和伸长率分别88.48 MPa,318.76 MPa和20.53%。  相似文献   

4.
对温轧后的45钢进行了球化退火,研究了温轧及球化退火工艺参数的变化对退火组织与性能的影响,讨论了45钢温轧+球化退火工艺的可行性。结果表明,温轧能加速球化和再结晶过程;随着退火温度和保温时间的增加,球化和再结晶更加充分。退火后渗碳体平均粒径在1.2 μm以下,铁素体粒径在2.5 μm以下,综合力学性能良好。该退火工艺简单,周期短,证明了温轧工艺的可行性。  相似文献   

5.
各种原始组织对亚温淬火强韧性的影响   总被引:4,自引:0,他引:4  
  相似文献   

6.
以AZ31镁合金为实验材料,通过多道次温轧工艺,研究低温时效处理对温轧板材组织和性能的影响。结果表明:经5道次温轧后合金组织得到明显细化,从初始态38μm细化至2.2μm;在随后120~160℃时效过程中,晶粒并未发生显著长大。经低温时效处理后,合金在基本保持温轧态拉伸强度的同时,其塑性得到明显提升。由晶界强化和位错强化模型定量描述发现,经5道次温轧后合金显微硬度增量为30HV。然而随着时效温度的升高,位错强化贡献显著降低,而晶界强化由于晶粒长大不明显而几乎无显著变化。合金经160℃时效2 h后,两种主要强化机制对显微硬度的贡献为16HV。  相似文献   

7.
将含0.011%C和17.45%Cr(质量分数)的17Cr铁素体不锈钢铸坯在1050℃轧至14.5 mm厚,然后分别再加热至800℃和900℃轧至5 mm厚钢板。检测了不同温度始轧的钢板的显微组织、晶粒取向和力学性能。结果表明:与在900℃始轧的17Cr钢热轧板相比,在800℃始轧的钢板纤维状晶粒更细小、组织更均匀,部分晶粒中出现剪切带,α织构较少,γ织构增多,屈服强度和抗拉强度更高。  相似文献   

8.
形变参数对中碳钢组织演变的影响   总被引:5,自引:0,他引:5  
通过热模拟实验研究了不同形变温度及在700℃下不同形变量时中碳钢35K的组织演变过程。结果表明,中碳钢通过形变可获得形变诱导铁素体(DIF);形变提高奥氏体向铁素体转变温度,随着形变温度的降低,DIF含量呈反“S”形增加,即先缓慢增加,随后快速增加。当DIF量超过平衡态铁素体量时,其增加趋势趋缓。随700℃形变量的增加,DIF含量呈“S”形增加,在形变量为0.7时可获得良好的球化组织。在中碳钢形变后的控冷过程中,根据形变量和形变温度所影响的未转变的奥氏体尺寸、形变储能、富碳程度和能量与成分起伏等,未转变的奥氏体将发生不同于传统未变形奥氏体的转变。因此,控制轧制和控制冷却后可获得离异珠光体、球粒状或短棒状渗碳体的微观组织。  相似文献   

9.
研究了亚温淬火工艺对45钢显微组织和力学性能的影响,探讨了亚温淬火条件下,奥氏体晶粒细化和马氏体转变的特点.结果表明,在760~810℃,随淬火温度升高,45钢的强度、硬度升高:高于810℃后,强度、硬度逐渐下降.45钢亚温淬火后得到细小的板条状马氏体组织,其原因与奥氏体品粒细化及铁素体存在分布状态有关.  相似文献   

10.
控轧控冷工艺对20MnSi钢组织和性能的影响   总被引:1,自引:1,他引:0  
通过对加热温度、终轧温度、各种冷却条件、冷却方式的控制,结合对实验样品进行组织、金相分析,研究控轧控冷工艺对20MnSi钢在轧制过程中性能、组织的影响.实验结果确定了最佳的工艺制度:加热温度为(1150±20)℃;终轧温度为(850±20)℃;精轧总变形量为60%;冷却速度控制在0.5~2.0℃/s;终冷温度控制在(620±20)℃  相似文献   

11.
通过SEM、EBSD和拉伸试验研究了温轧温度对中碳Cr-Mo钢组织演变和力学性能的影响。结果表明:较高温轧温度有利于Cr-Mo钢组织的均匀分布,当轧制温度从500 ℃增加到600 ℃时,铁素体晶粒尺寸由0.424 μm增加到0.490 μm,晶粒尺寸差别不断减小,屈服强度由1380 MPa下降至1062 MPa,在550 ℃轧制试验钢的塑性最好,强塑积最高,为5816 MPa·%。  相似文献   

12.
利用扫描电镜、电子背散射衍射分析技术和拉伸试验机研究了具有伪共析初始组织的45钢温轧后不同退火保温时间对组织演变和力学性能的影响。结果表明,伪共析钢温轧后的组织呈多相多尺度分布,渗碳体破碎,在后续退火处理中,随着退火时间的增加,渗碳体逐渐球化、长大并且分布趋于均匀,多相多尺度结构弱化。退火时间从15 min延长至120 min后,铁素体晶粒平均尺寸由2.32 μm长大到5.62 μm,规定塑性延伸强度由温轧态的1057 MPa下降到662 MPa,均匀伸长率在退火120 min时最大。整体来说,试验钢经过500 ℃温轧后再经600 ℃退火15 min,综合力学性能达到最优。  相似文献   

13.
采用双相区(α+γ)轧制及双相区短时保温处理相结合的方式,制备了一种高强高韧性低碳低合金铁素体/马氏体双相钢,并采用SEM、室温拉伸试验和维氏硬度检测等手段研究了不同轧制工艺对铁素体/马氏体双相钢组织和性能的影响。结果表明:相对于普通的连续轧制工艺,等温轧制和道次之间短时保温处理相结合的工艺对铁素体/马氏体双相钢的相比例、形貌和尺寸有重要影响。等温轧制及短时保温处理的双相钢的组织明显细化,马氏体相比例增加,组织均匀性显著改善,屈服强度提升了34%,达到1229 MPa,屈强比高达0.78,断口为韧性断口特征,呈细小韧窝状,具有良好的综合力学性能。  相似文献   

14.
通过SEM观察和EBSD技术研究了冷轧中碳Cr-Mo钢在600 ℃退火不同时间后的组织演变规律。结果表明,随退火时间的延长,渗碳体颗粒分布越弥散,并且球化越来越明显,变形后的铁素体条带转变为铁素体等轴晶粒。晶粒内部渗碳体颗粒较小,晶界处渗碳体颗粒较大,部分呈连续分布,且晶粒尺寸不断增大,但在退火时间小于240 min时,晶粒长大不明显,进一步延长保温时间后,晶粒尺寸增长变快。当保温时间从15 min延长到120 min和480 min时,铁素体平均晶粒尺寸从0.670 μm长大到0.732 μm和2.000 μm。在退火0~120、120~240、240~360和360~480 min时段的晶粒长大速率分别为55.7%、9.7%、74.3%和42.9%,其中0~15 min时晶粒尺寸的增长比例高达42.6%。在退火0~120 min时段,晶粒长大速率相对较大,从节约能源的角度考虑,退火时间可以定在120 min。  相似文献   

15.
分析了不同强度级别螺栓用冷镦钢盘条不同初始组织形态对退火组织演变的影响。工业轧制试验结果表明:低温轧制SCM435钢得到的多边形铁素体、珠光体、贝氏体及少许马氏体组织不利于获得均匀分布的球状珠光体;Gleeble热模拟组织转变研究结果表明:低温形变后ML35钢晶粒明显偏细,且碳化物部分球化,有利于获得球状 珠光体。  相似文献   

16.
本文采用EBSD、SEM、TEM和准静态高温拉伸试验研究了中温轧制变形量对新型镍基高温合金微观组织和高温(760 ℃)力学性能的影响。结果表明,中温轧制变形量对合金高温力学性能影响显著,相比于标准热处理(固溶处理+双级时效)合金试样的高温力学性能(σy=860 MPa,σuts=973 MPa和εf=3.5%),当中温轧制变形量为10%时,合金的σy提高了230 MPa,σuts提高了166 MPa,εf变化不明显,为4.1%;而当中温轧制变形量为80%时,合金的σy提高了190 MPa,σuts提高了165 MPa,εf大幅度增加,为22.5%,实现了合金高温强塑性匹配。760 ℃时合金强度和延伸率的提升是由于变形机制发生改变,随着变形量的增加,合金的主要变形机制由层错剪切向微孪生转变,微孪晶的形成既保证了合金的高温强度,又有利于延伸率的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号