首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
夏哲辉 《电力学报》2013,(6):454-458
研究了改善双馈风电机组(DFIG)的并网风电场暂态稳定性的措施。目前现存的大部分双馈型变速风电机组并不具备故障穿越能力。在DIgSILENT/PowerFactory14.0中建立了具有暂态无功调节能力的变速风电机组电网侧换流器控制模型以及故障后桨距角控制模型,通过对并网风电场仿真分析验证了模型的有效性。仿真结果表明:当风电场电网侧发生短路故障情况下,双馈风电机组电网侧换流器能够产生一定的无功功率支持电网电压;桨距角控制能够降低风电机组的机械转矩,防止机组超速以及电压失稳。双馈风电机组的故障穿越能力得以实现。  相似文献   

2.
在分析双馈风力发电机组主控系统、变流器、变桨机构协同控制的基础上,提出了通过调整叶片的桨距角,减少风能的捕获,防止机组超速的变桨机构控制策略及电网电压恢复后快速、稳定恢复有功功率输出的功率给定策略。110 kW小功率试验台模拟试验及2MW双馈风电机组低电压穿越测试说明,控制策略能够满足不同风况下,双馈风电机组低电压穿越过程中转速及功率恢复的控制。  相似文献   

3.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

4.
当电网电压发生深度跌落时,需要风力发电系统不脱网且向电网提供动态无功支撑,采用传统励磁变换器的双馈风电机组往往需要通过外加装置才能实现这一要求.外加装置使系统变得复杂,可靠性和效率降低.针对这一问题,文中分析了双馈风电机组低电压穿越的瓶颈,提出了构建坚强励磁系统的思想,并设计了一种基于变结构准Z源的新型双馈风电机组强励变换器.将传统的电容型母线替换为准Z源网络,当电网正常时该变换器运行于可调电压的单电容型母线状态,当电网电压发生深度跌落时,该变换器可以迅速升高直流链电压,从而保证转子侧变换器在故障期间始终可控.搭建了双馈风电机组低电压穿越仿真与实验系统,仿真与实验结果表明所提强励变换器拓扑具有良好的稳态与动态性能,在电压深度跌落时能够有效控制转子电流,实现双馈风电机组的低电压穿越和无功支撑.  相似文献   

5.
文章讨论了电网电压骤升时双馈风电机组网侧和转子侧变流器有功、无功功率的分配原则,给出有功、无功电流的极限表达式,提出一种能有效提供动态无功支持的高电压穿越(high voltage ride-through,HVRT)实现方案。在机组端电压骤升至1.1倍标称值以上时,该方案一方面控制网侧变流器输出与电压骤升幅度相匹配的无功电流,实现母线电压的稳定;另一方面通过优化转子侧变流器有功、无功电流设定,使双馈感应发电机工作在无功支持模式,优先向故障电网输出一定的感性无功功率。仿真和基于东方风电6 MW试验台实验结果表明,该控制方案不仅能确保电网电压骤升期间双馈风电机组的不脱网运行,还能对故障电网提供一定的动态无功支撑,协助电网电压快速恢复,利于其它并网负载的安全运行。  相似文献   

6.
为保证电网运行的安全与稳定性,避免电网电压骤升时风电机组从电网中解列,需提升风电机组高电压穿越的能力。为快速抑制高电压故障时网侧过调制引起的电压、电流冲击,首先确定电网电压骤升时网侧变流器安全运行区域。在此基础上,在线计算双馈风电机组在不同电网电压条件下的高电压穿越稳态最佳工作点,以保证网侧过调制时间最短。同时,设计了参数补偿模块以消除稳态工作点误差。仿真结果表明,该控制策略保证风电机组在电网电压故障骤升期间不脱网运行,能够根据电网要求提供一定的无功支撑,且提升了双馈风电机组在故障穿越期间的响应速度及稳态控制效果。  相似文献   

7.
该文基于双馈风电机组(doubly-fed induction generator,DFIG),在电网电压对称骤升下,对电网电压与转子电流之间的暂态过程进行详细的理论推导,提出一种有效抑制转子过电流的控制策略,并针对网侧变换器传统控制方法作出相应的改进。在不增加任何硬件设备的情况下,转子侧和网侧分别附加转子电流抑制(rotor current suppression,RCS)和外环电网电压控制(grid voltage suppression,GVS)措施,并给出详细的控制框图。该控制方法不仅可以减少Crowbar装置频繁动作致使转子侧变换器快速短接的问题,而且充分发挥风电机组自身的动态无功支撑能力,保证风电机组在电网电压故障骤升期间不脱网运行,有效提高双馈风力发电机的高电压穿越(high voltage ride through,HVRT)能力及风电机组运行的可靠性。最后,在PSCAD/EMTDC中对所提出的控制策略进行仿真建模分析,验证了该控制方案的有效性和可行性。  相似文献   

8.
分析了1.5 MW 82 m风轮机型双馈风电机组的桨距角控制原理。应用GH BLADE软件,建立了机组模型,计算了桨距角由0°~20°、叶尖速比为3~14.7的力矩系数。给出低电压穿越状态的传动链受力及叶片可能调整的最大角度。提出不同风况下进入低电压穿越时,基于EFC方式和桨距角给定方式的控制策略和有功功率恢复策略。仿真计算说明通过调整叶片的桨距角减小气动力矩输入,可以实现低电压穿越过程机组转速的平稳过渡,通过回调叶片桨距角与快速给定有功功率的同步操作,减小低电压穿越结束时的功率振荡。110 kW小功率试验台试验及1.5 MW双馈机组现场试验说明控制策略能够满足不同风况下,双馈机组低电压穿越过程转速及功率恢复的控制。  相似文献   

9.
针对由具有无功调节能力的双馈风机DFIG(doubly-fed induction generator)组成的海上风电场,结合海上风电场特点和无功补偿配置情况,在考虑风电场内机组crowbar动作情况、机端电压和因尾流效应导致的风速差异对双馈风机动态无功极限影响的基础上,提出在电网电压跌落期间通过调节转子电流,充分利用场内双馈风机的无功协调控制能力进行最大无功支撑实现低电压穿越;在电网电压恢复阶段,控制场内双馈风机快速输出感性无功抑制电网电压骤升,提高了低穿恢复阶段的过电压抑制能力。基于DIgSILENT/PowerFactory仿真平台,搭建风电场协调控制模型验证所提控制策略的效果。仿真结果表明,所提控制策略在电压低跌落状态下可以充分发挥风电机组的无功出力能力,协助电网电压快速恢复,有效提高故障电网的暂态电压水平。  相似文献   

10.
针对电网电压跌落时投入现有被动式转子Crowbar保护,只能实现对双馈风电机组的系统保护,而无法实现低电压穿越的不足,提出故障时在定子中串接由电感组成的新型Crowbar。首先从理论上对双馈发电机电压跌落极限下激起的电磁过渡过程进行分析计算,揭示影响电磁过渡过程的本质规律。在此基础上,给出双馈发电机在电压跌落极限下新型Crowbar电感值整定方法及励磁控制策略。理论分析和仿真结果表明,新型Crowbar与控制策略相结合即使在电压跌落极限下,也能够对双馈发电机转子侧变流器提供保护,并向电网提供无功支撑,实现电压跌落极限下低电压穿越。  相似文献   

11.
双馈风电机组高电压穿越控制策略与试验   总被引:2,自引:0,他引:2  
针对风电的高电压脱网问题,介绍了主要风电并网导则对高电压穿越的要求,对比分析了双馈风电机组低电压和高电压的电磁暂态特性,论证了双馈风电机组1.3倍额定电压的高电压穿越过程全程可控的可行性。提出了一种基于双馈变流器动态无功控制的高电压穿越控制策略和风电机组主控系统与变流器协同控制完成高电压穿越的实现方法,避免了Crowbar或Chopper保护动作对高电压穿越特性的不利影响。在MATLAB/Simulink中建立了2 MW双馈风电机组高电压穿越仿真模型,实现了高电压穿越全过程仿真;利用高电压发生装置,在2 MW双馈风电机组上进行了高电压穿越现场试验,试验结果表明了理论与仿真分析的准确性及控制策略的有效性。  相似文献   

12.
弱电网下系统的电压稳定裕度较低,而风电场的故障穿越性能对系统的暂态电压稳定性有显著影响。传统的双馈风电机组故障穿越控制方法都是基于适用于强电网的定功率控制,不利于维持弱电网下的电压稳定性。提出一种适用于弱电网中双馈风电机组的新型故障穿越控制方法。这种新型控制方法基于同步控制,通过有功电流和无功电流下垂控制风电机组出口电压的角度和幅值,使双馈风电机组以可控电压源的外特性运行。该控制方法能使双馈风电机组在弱电网的对称故障和不对称故障中均提供无功和有功电流,并且能在故障清除后的重励磁暂态过程中提高系统的电压稳定性。该方法同样适用于需要在联网和孤网运行之间进行无缝切换的双馈风电机组。最后,通过双馈风电机组接入无穷大电网实际电网、孤网的仿真算例验证了该故障穿越控制方法的有效性及优越性。  相似文献   

13.
随着风电并网导则对风电机组的稳定性、可靠性要求日益提高,研究风电机组的高电压穿越技术十分必要。提出一种基于无功支撑和硬件耗能的双馈风电机组高电压穿越控制方案,在电网电压升高到1.1倍标幺值及以上时,一方面向电网中吸收无功功率;另一方面利用耗能电阻Chopper消耗直流侧多余的能量以保护电机与变流器。仿真结果表明该方案能够实现双馈风电机组的高电压穿越,且能够降低机组端电压,有利于故障电网的恢复。  相似文献   

14.
《高压电器》2017,(5):35-40
为了使风电机组/风电场与电网之间能够和谐稳定高效的运行,笔者在通过对电网电压骤升时风电机组的暂态分析,提出了采用静止同步补偿器STATCOM实现双馈风电机组高电压穿越的方案。在电网电压骤升的情况下,通过STATCOM控制策略吸收电网容性无功并补偿感性无功支撑系统运行不脱网。在MATLAB/Simulink仿真平台上搭建仿真模型并进行仿真,仿真结果表明,当电网电压骤升时STATCOM不仅能确保风电机组不脱网运行还能及时向故障电网提供一定的感性无功,协助电网电压快速恢复。  相似文献   

15.
双馈风电机组限电弃风运行能够为电网提供备用和频率支撑。为减小限电弃风工况下转速和桨距角频繁动作致使机组产生的机械疲劳,提出一种基于机组运行点转移轨迹优化的有功控制策略,并通过引入下垂控制使其具备了参与电网一次调频的功能。对限电弃风工况下机组在不同运行点处的稳定性进行分析;考虑机组有功平衡及运行点稳定性等约束条件,建立以转速和桨距角综合调整量最小为目标函数的运行点转移轨迹优化模型,并提出优化模型在出现不可行解时的处理机制,以获得可行的最优转移轨迹;建立机组运行轨迹和调频控制器,并对变桨系统和转子侧变频器的传统控制策略进行改进,使机组能够沿最优转移轨迹调整有功和参与调频。仿真结果表明,利用所提控制策略能使机组在准确完成限电弃风任务并为电网提供频率支撑的同时,大大减少机组转速和桨距角的调整量。  相似文献   

16.
风电机组的电网电压故障穿越能力是风机重要的并网性能评价指标。随着风机低电压穿越能力的深入研究,电网电压骤升成了威胁风机安全运行的因素。为了研究双馈风电机组在电网电压骤升下的特性及不脱网运行控制策略,分析了电网电压骤升时双馈感应发电机的电磁暂态过渡过程。结合现场运行风电机组的实际特性,提出一种易于工程实现的双馈风电机组高电压穿越控制策略。该控制策略不需更改原风机一次回路结构,只对双馈风机的发电机侧控制逻辑进行修改,即可实现双馈风电机组在电网电压骤升时不脱网运行,保障机组安全与电网稳定。最后通过仿真验证了控制策略的可行性。  相似文献   

17.
变桨距型双馈风电机组并网控制及建模仿真   总被引:2,自引:3,他引:2  
变桨距型双馈风电机组在并网过程中,转子励磁控制虽然具有良好的定子电压调节效果,但是对转子转速缺乏控制。针对该问题提出了结合变桨距系统调整转子转速,共同完成并网的方案。由于双馈发电机并网前后的控制策略不同,分析了控制系统间无扰切换的方法。采用分开建模、分时仿真的思路建立了风电机组模型,实现了风机并网全过程仿真,研究结果证明了本文所提方案的有效性。  相似文献   

18.
双馈风电机组逐步成为风电市场主流机型,然而其具备的有功、无功解耦控制策略却使机组有功功率无法响应电力系统频率的变化,从而加剧了系统频率稳定性问题。根据不同的风速条件,提出超速与桨距角控制相协调的减载控制策略,使得预留的功率作为调频备用,同时结合转子惯性综合控制进行一次调频。该控制策略可以使双馈风电机组有效支持系统频率调整。最后通过仿真结果验证了双馈风电机组综合调频控制策略的有效性。  相似文献   

19.
在研究双馈风力发电系统高电压穿越的节能控制问题的过程中,考虑到外部风力环境变化较大,需保持变换器的稳定性节能控制。传统节能控制方法不仅动态及稳态性能差,而且节能控制策略相对复杂。为了提高节能控制效果,提出采用串联网侧变换器的双馈风电系统高电压穿越的节能控制策略,向串联网侧变换器的控制向电机定子侧和电网间添加合理的控制电压,按照电网电压定向的同步旋转,给出d-q轴系下SGSC的电压控制方程,保持DFIG定子端电压不变,过滤DFIG定子磁链中的暂态直流分量。当双馈风电系统电压及电流均不超限时,对转子侧变换器和并联网侧变换器的输出电压矢量进行节能控制,使双馈风电系统为电网提供最大程度的无功支持,快速恢复电网电压。仿真实验结果表明,所提策略具有很高的节能控制性能。  相似文献   

20.
随着风电并网规模的增大,双馈感应发电机必须具备低电压穿越能力。在依托风电并网导则对风电机组低电压穿越能力要求的基础上,在双馈风电机组转子侧加装Crowbar硬件保护电路、背靠背变流器,直流侧加装卸荷电路并配合风力机的桨距角控制以实现双馈风电机组的低电压穿越功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号