首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zr-Al organometallic compounds have been spray-dried and heated at temperatures 600 to 1400°C to prepare ZrO2-Al2O3 composite powders. The powders consist of balloon-like particles 0.5 to 2 m in diameter with homogeneously dispersed tetragonal ZrO2 grains 0.1 to 0.2 m in diameter. The tetragonal fraction of ZrO2 in the composite powders is higher than that in the powders prepared from sols of Zr(OBun)4 and Al[OCH(CH3)2]3. The fraction is affected by the organofunctional group in the Zr-Al compounds.Zr(OBun)4 = Zr(OC4Hgn)4; Al[OCH(CH3)2]3 = Al(OPri)3.  相似文献   

2.
3.
ZrO2-SiO2 (11) mixtures and ZrO2 particles were prepared by a sol-gel method from the solutions of ZrOCl2·8H2O (ZOC) + Si(OC2H5)4 (TEOS) + C2H5OH and ZOC + C2H5OH + H2O + NH4Cl systems, respectively. Quantitative changes of phase crystallized by heating were compared with those of ZOC + TEOS + H2O and/or ZrO(NO3)2 · 2H2O + H2O systems, respectively. The stability of metastable tetragonal (mt)-ZrO2 particles depends on the Young's modulus of the SiO2 matrix. Transition metal oxides existing on the interface assisted in stabilizing mt-ZrO2. The order of the assistance agreed with that of the relative field strengths of their oxides. A relationship between the ionic radius and the volatility of anionic groups, and the difficulty of nucleation for the martensitic transformation accompanying a shear stress, is suggested.  相似文献   

4.
5.
Ceria-stabilized tetragonal zirconia polycrystals show high toughness and high resistance to the low-temperature ageing degradation. However, ceria is less effective in stabilizing tetragonal zirconia compared to yttria and other trivalent oxides. The tetravalent oxide of CeO2 can be easily reduced to the trivalent CeO1.5, but phase separations occur leading to the destabilization of the tetragonal phase or the stabilization of the cubic phase. A procedure of high-temperature sintering and low-temperature reduction has been developed for preparing CeO1.5-stabilized tetragonal zirconia. It was found that 9 mol% CeO1.5 could stabilize the tetragonal zirconia to room temperature and that the stability region in the CeO1.5-ZrO2 system was extended to the lower dopant content region. The CeO1.5-stabilized tetragonal zirconia had a lower tetragonality and lower transformability compared to the CeO2-stabilized tetragonal zirconia with the same dopant mole percentage. The changes in the phase composition, tetragonality and stability caused by the reduction of CeO2 to CeO1.5 have been discussed in relation to the changes of oxygen stoichiometry, which is considered of the firstorder importance in the stabilization of polymorphous zirconia.  相似文献   

6.
7.
In the system ZrO2-CeO2, metastable t-ZrO2 solid solutions containing up to 30 mol% CeO2 crystallize at temperatures of 385–430 °C from amorphous materials prepared by the hydrazine method. Crystalline Ce3ZrO8 solid solutions are formed in as-prepared powders between 30–75 mol % CeO2. The variation of the lattice parameters of both solid solutions is determined as a function of CeO2 content. The value of the lattice parameter of pure Ce3ZrO8 (cubic) is a = 0.5342 nm. Detailed characterization of the Ce3ZrO8 powder has been performed. Crystallite size and particle size are strongly dependent on the heating temperature. Specific surface areas do not drop below 40 m2g–1 until the heating temperature is above 1000°C.  相似文献   

8.
9.
Abstracts are not published in this journal This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
ZrO2-Gd2O3 alloys containing 2,3,5 and 8 mol.% Gd2O3 have been prepared by mixed oxide (MO), hybrid sol-gel (SG), and co-precipitation (CP) routes. No tetragonal (t) phase is retained in the MO method, while 100% t phase is obtained in the calcined CP samples; the SG method leads to only partial stabilization of the t phase. Washing of the CP powders with propan-2-ol leads to unagglomerated powders with increased specific surface area (145 versus 89 m2g–1) and sintered density (98% versus 79%). Cubic and t phase also appear on sintering the samples with >2 mol.% Gd2O3.  相似文献   

11.
12.
13.
14.
A facile solvothermal method was introduced to incorporate Eu3+ ions into the monodisperse tetragonal ZrO2 nanocrystals (NCs) with small size of approximately 4 nm. The optical properties for Eu3+ doped ZrO2 NCs were investigated in detail by using the photoluminescence (PL) spectroscopy at room and low temperatures. Intense red emissions from Eu3+ ions could be achieved via the host sensitization, which was found to be much more efficient than the direct excitation of lanthanide ions. Moreover, multiple sites of Eu3+ as well as the host-to-Eu3+ energy transfer were also revealed based on the PL analyses.  相似文献   

15.
The synthesis of ultrafine zirconia powders by mechanochemical reaction of ZrCl4 with CaO has been investigated using x-ray diffraction, TEM and DSC measurements. Mechanical milling resulted in a nanoscale mixture of CaO and amorphous ZrCl4. with no evidence of any reaction having occurred. Subsequent heat treatment at temperatures above 300 °C resulted in the formation of separated particles of cubic ZrO2,5–10 nm in diameter, within an CaCl2 matrix. Measurements of the effect of particle size on the crystal structure of ZrO2 are also reported.  相似文献   

16.
Tetragonal zirconia coatings (ZrO2) without doping any trivalent impurities have been deposited by metal-organic chemical vapor deposition (MOCVD) on (100) Si single crystals, using Zr(thd)4 precursor. The surface and cross-section morphologies were observed with Field-Emission-Gun Scanning Electron Microscopy (FEG-SEM). The crystalline structures were characterized by grazing incident X-ray diffraction (GIXRD). Crystallographic textures of these films were studied for both {011}t and {110}t planes by pole figure recording by X-ray diffraction under a 4-circle goniometer. The internal stresses were measured with the use of sin2 psi method. In order to study the relationship of microstructures and tetragonal phase stabilization in ZrO2 films, annealing experiments were taken at different temperature. The results show that the critical crystallite size for tetragonal to monoclinic phase transformation is different for samples with different initial microstructures. Besides the critical crystallite size and the residual stress, the texture and crystallite morphology of the ZrO2 films are responsible for the stabilization of the metastable tetragonal phase.  相似文献   

17.
Samples of well-dispersed hexagonal Rh2O3 on tetragonal ZrO2 have been prepared by the code composition of the nitrates at 900°C. A comparison of the stability towards reduction of the bulk and dispersed Rh2O3 products demonstrates the influence of an interaction between the dispersed metal oxide and the support.  相似文献   

18.
The phases, transformability, microstructure and mechanical properties of ZrO2-Gd2O3 polycrystals containing 1.75–8 mol% Gd2O3 were studied. The samples were prepared by a coprecipitation route followed by sintering at 1400°C for 2 hours. The grain size was in the range of 0.1–0.2 m except for some large grains at high Gd2O3 contents. Only a tetragonal phase was observed between 2–4 mol% Gd2O3 and a cubic phase for compositions containing 9.6 mol% Gd2O3. A peak K IC of 12 MPa m1/2 and a strength of 800 MPa were obtained in the 2 mol% Gd2O3 alloy for which the t m transformation on the fracture surface was also found to be maximum. Transformation toughening is able to account for most of the toughness of the samples.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号