首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The b- and delta-subunits of the Escherichia coli ATP synthase are critical for binding ECF1 to the F0 part, and appear to constitute the stator necessary for holding the alpha3beta3 hexamer as the c-epsilon-gamma domain rotates during catalysis. Previous studies have determined that the b-subunits are dimeric for a large part of their length, and interact with the F1 part through the delta-subunit (Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 31058-31064). To further study b-subunit interactions, three mutants were constructed in which Ser-84, Ala-144, and Leu-156, respectively, were replaced by Cys. Treatment of purified ECF1F0 from all three mutants with CuCl2 induced disulfide formation resulting in b-subunit dimer cross-link products. In addition, the mutant bL156C formed a cross-link from a b-subunit to an alpha-subunit via alphaCys90. Neither b-b nor b-alpha cross-linking had significant effect on ATPase activities in any of the mutants. Proton pumping activities were measured in inner membranes from the three mutants. Dimerization of the b-subunit did not effect proton pumping in mutants bS84C or bA144C. In the mutant bL156C, CuCl2 treatment reduced proton pumping markedly, probably because of uncoupling caused by the b-alpha cross-link formation. The results show that the alpha-subunit forms part of the binding site on ECF1 for the b2delta domain and that the b-subunit extends all the way from the membrane to the top of the F1 structure. Some conformational flexibility in the connection between the second stalk and F1 appears to be required for coupled catalysis.  相似文献   

2.
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.  相似文献   

3.
The rate of ATP synthesized by the ATP synthase (F0F1-ATPase) is limited by the rate of energy production via the respiratory chain, when measured in everted membrane vesicles of an Escherichia coli atp wild-type strain. After energization of the membranes with NADH, fractional inactivation of F0F1 by the covalent inhibitor N,N'-dicyclohexylcarbodiimide allowed the rate of ATP synthesis/mol remaining active ATP synthase complexes to increase; the active ATP synthase complexes were calculated using ATP hydrolysis rates as the defining parameter. In addition, variation of the assay temperature revealed an increase of the ATP synthesis rate up to a temperature of 37 degrees C, the optimal growth temperature of E. coli. In parallel, the amount of F0F1 complexes present in membrane vesicles was determined by immunoquantitation to be 3.3 +/- 0.3% of the membrane protein for cells grown in rich medium and 6.6 +/- 0.3% for cells grown in minimal medium with glycerol as sole carbon and energy source. Based on these data, a turnover number for ATP synthesis of 270 +/- 40 s(-1) could be determined in the presence of 5% active F0F1 complexes. Therefore, these studies demonstrate that the ATP synthase complex of E. coli has, with respect to maximum rates, the same capacity as the corresponding enzymes of eukaryotic organells.  相似文献   

4.
This case describes a new feature of fetal brain death syndrome, abnormal movements mimicking fetal convulsions being subsequently found to be decerebrate hypertonicity in a brain-dead fetus. It also confirms the diagnostic criteria of fetal brain death, both clinical and ultrasonic. The development of polyhydramnios both prior to and after the presumed neurological event is suggested as an association with the diagnosis of fetal brain death. Increased awareness of this event and the heterogeneity of the presentation may prevent further unnecessary Caesarean sections, as to date only 4 of the 10 cases in the literature were diagnosed prenatally. Utilization of techniques such as fetal blood sampling should be considered to further delineate the diagnosis.  相似文献   

5.
6.
A method for reconstitution of membrane proteins into unilamellar liposomes is described. The model enzyme was the F0F1 ATP synthase from mitochondria when in complex or free from its inhibitor protein. The enzymes were first solubilized with either of two detergents, i.e., n-dodecyl-beta-D maltoside or lauryldimethylamine oxide. After solubilization, the enzymes were passed through a column of Sepharose-AH using an ADP/sodium cholate selective elution buffer. The enzymes recovered from the column were subsequently passed through a centrifuge column of Sephadex G-50 fine. The eluate contained liposomes in which the F0F1 complex (with and without inhibitor protein) had been reconstituted. The reconstituted enzymes were capable of hydrolyzing ATP with formation of electrochemical H+ gradients. They also catalyzed the ATP-Pi exchange reactions. Thus the F0F1 complex which is formed by 18 subunits can be rapidly reconstituted into liposomes in a fully functional state. Moreover the data show that the interactions between the enzyme and its inhibitor protein are not perturbed in the reconstitution procedure.  相似文献   

7.
The correlation between the rate of ATP synthesis and light-induced proton flux was investigated in proteoliposomes reconstituted with bacteriorhodopsin and ATP synthase from thermophilic Bacillus PS3. By variation of the actinic light intensity it was found that ATP synthase activity depended in a sigmoidal manner on the amplitude of the transmembrane light-induced pH gradient. Maximal rates of ATP synthesis (up to to 200 nmol ATP x min(-1) x mg protein (-1) were obtained at saturating light intensities under a steady-state pH gradient of about pH 1.25. It was demonstrated that this was the maximal deltapH attainable at 40 degrees C in reconstituted proteoliposomes, due to the feedback inhibition of bacteriorhodopsin by the proton gradient it generates. In the absence of valinomycin, a small but significant transmembrane electrical potential could develop at 40 degrees C, contributing to an increase in the rate of ATP synthesis. The H+/ATP stoichiometry was measured at the static-head (equilibrium) conditions from the ratio of the phosphate potential to the size of the light-induced pH gradient and a value of about four was obtained under the maximal electrochemical proton gradient. Increasing the amount of bacteriorhodopsin in the proteoliposomes at a constant F0F1 concentration led to a large increase in the rate of ATP synthesis whereas the magnitude of delta pH remained the same or, at very high bacteriorhodopsin levels, decreased. Consequently the H+/ATP stoichiometry was found to increase significantly with increasing bacteriorhodopsin content. Reconstitutions with mixtures of native and impaired bacteriorhodopsin (Asp96-->Asn mutated bacteriorhodopsin) further demonstrated that this increase in the coupling efficiency could not be related to protein-protein interactions but rather to bacteriorhodopsin donating H+ to the ATP synthase. Increasing the amount of negatively charged phospholipids in the proteoliposomes also increased the coupling efficiency between bacteriorhodopsin and ATP synthase at a constant transmembrane pH gradient. Similar results were obtained with chloroplast ATP synthase. Furthermore, ATP synthase activities induced by delta pH/delta psi transitions were independent of bacteriorhodopsin or anionic lipid levels. These observations were interpreted as indicating that, in bacteriorhodopsin/ATP synthase, proteoliposomes, a localized pathway for coupling light-driven H+ transport by bacteriorhodopsin to ATP synthesis by F0F1 might exist under specific experimental conditions.  相似文献   

8.
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.  相似文献   

9.
The analysis of amikacin by liquid chromatography using a column packed with poly(styrene-divinylbenzene) and pulsed electrochemical detection on a gold electrode is described. A two-step gradient was necessary to obtain a good separation together with a reasonable analysis time of 60 min. The mobile phases consisted of an aqueous solution of 1 g/l or 60 g/l sodium sulfate, 1.8 g/l sodium octanesulfonate and 50 ml/l 0.2 M phosphate buffer, pH 3.0. Sodium hydroxide was added postcolumn. The influence of the different chromatographic parameters on the separation was investigated. When a number of commercial samples of amikacin was analyzed using this method, ten different components were separated.  相似文献   

10.
ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.  相似文献   

11.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

12.
The membrane topology of the a subunit of the F1F0 ATP synthase from Escherichia coli has been probed by surface labeling using 3-(N-maleimidylpropionyl) biocytin. Subunit a has no naturally occurring cysteine residues, allowing unique cysteines to be introduced at the following positions: 8, 24, 27, 69, 89, 128, 131, 172, 176, 196, 238, 241, and 277 (following the COOH-terminal 271 and a hexahistidine tag). None of the single mutations affected the function of the enzyme, as judged by growth on succinate minimal medium. Membrane vesicles with an exposed cytoplasmic surface were prepared using a French pressure cell. Before labeling, the membranes were incubated with or without a highly charged sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. After labeling with the less polar biotin maleimide, the samples were solubilized with octyl glucoside/cholate and the subunit a was purified via the oligohistidine at its COOH terminus using immobilized nickel chromatography. The purified samples were electrophoresed and transferred to nitrocellulose for detection by avidin conjugated to alkaline phosphatase. Results indicated cytoplasmic accessibility for residues 69, 172, 176, and 277 and periplasmic accessibility for residues 8, 24, 27, and 131. On the basis of these and earlier results, a transmembrane topology for the subunit a is proposed.  相似文献   

13.
14.
Subunit a of the E. coli F1F0 ATP synthase was probed by insertion scanning mutagenesis in a region between residues Glu219 and His245. A series of single amino acid insertions, of both alanine and aspartic acid, were constructed after the following residues: 225, 229, 233, 238, 243, and 245. The mutants were tested for growth yield, binding of F1 to membranes, dicyclohexylcarbodiimide sensitivity of ATPase activity, ATP-driven proton translocation, and passive proton permeability of membranes stripped of F1. Significant loss of function was seen only with insertions after positions 238 and 243. In contrast, both insertions after residue 225 and the alanine insertion after residue 245 were nearly identical in function to the wild type. The other insertions showed an intermediate loss of function. Missense mutations of His245 to serine and cysteine were nonfunctional, while the W241C mutant showed nearly normal ATPase function. Replacement of Leu162 by histidine failed to suppress the 245 mutants, but chemical rescue of H245S was partially successful using acetate. An interaction between Trp241 and His245 may be involved in gating a "half-channel" from the periplasmic surface of F0 to Asp61 of subunit a.  相似文献   

15.
In Escherichia coli F1F0-ATP synthase, the two b subunits form the second stalk spanning the distance between the membrane F0 sector and the bulk of F1. Current models predict that the stator should be relatively rigid and engaged in contact with F1 at fixed points. To test this hypothesis, we constructed a series of deletion mutations in the uncF(b) gene to remove segments from the middle of the second stalk of the subunit. Mutants with deletions of 7 amino acids were essentially normal, and those with deletions of up to 11 amino acids retained considerable activity. Membranes prepared from these strains had readily detectable levels of F1-ATPase activity and proton pumping activity. Removal of 12 or more amino acids resulted in loss of oxidative phosphorylation. Levels of membrane-associated F1-ATPase dropped precipitously for the longer deletions, and immunoblot analysis indicated that reductions in activity correlated with reduced levels of b subunit in the membranes. Assuming the likely alpha-helical conformation for this area of the b subunit, the 11-amino acid deletion would result in shortening the subunit by approximately 16 A. Since these deletions did not prevent the b subunit from participating in productive interactions with F1, we suggest that the b subunit is not a rigid rodlike structure, but has an inherent flexibility compatible with a dynamic role in coupling.  相似文献   

16.
Morgagni-Larrey's hernias, which are both infrequent and generally asymptomatic, are often diagnosed by chance during routine diagnostic tests performed for other pathologies. Usually congenital in adults, they are often small or only take the form of a pre-hernia lipoma. Intestinal occlusion is rarely described and frequently entails diagnostic difficulties before hydroaerial levels are demonstrated in the thoracic region. In these cases, surgery using an abdominal approach should be preferred in order to treat compressed abdominal viscera at the same time and to exclude the bilateral nature of the lesion. The authors present two cases of an adult man and woman who were referred to their attention for occlusive pathologies. Both were operated using a laparotomy approach. The reduction of abdominal viscera did not present any difficulties. The hernial sac was only removed in the first patient. Plastic surgery was completed by attaching the diaphragmatic flap to the costal and sternal wall using separate non-reabsorbing suture stitches. No complications were reported.  相似文献   

17.
Genomic sequences encoding murine Lfm1, whose predicted protein sequence is 96% and 98% similar to bovine and rat F1F0-ATP synthase e subunits (respectively), have been amplified from BALB/cByJ DNA, cloned, and sequenced. The 1.1-kilobase gene has 3 introns and 4 exons, and its coding sequence differs by two nucleotides compared to the previously published BALB/cHnn Lfm1 cDNA sequence. A PstI restriction site polymorphism in intron 2 between C57BL/6J and Mus spretus was used to map this gene to Chromosome 5 near D5Mit9. Related sequences were mapped on Chromosomes 8, 11, and 2 unlinked loci on Chromosome 2 using Southern blot analyses with the 1. 1-kilobase gene as probe. Previous studies from this laboratory indicated that the Lfm1/e subunit was regulated by the level of dietary fat and carbohydrate. Northern hybridization analyses demonstrated that e subunit mRNA abundance showed statistically significant differences (p < 0.025) between hearts of BALB/c mice fed 3% and those fed 20% corn oil for 2 weeks and in liver (p < 0. 05) from the same animals. Significant differences were also observed in hepatic and heart mRNA expression at different times after eating in animals subjected to a fast/refeed regimen. The implications of the high degree of sequence similarity to the e subunit for rat and bovine F1F0-ATP synthase and its regulation by diet are discussed.  相似文献   

18.
Conditions have been reported under which the F1 moiety of bovine heart ATP synthase catalyzes the hydrolysis of ATP by an apparently cooperative mechanism in which the slow rate of hydrolysis at a single catalytic site (unisite catalysis) is enhanced more than 10(6)-fold when ATP is added in excess to occupy one or both of the other two catalytic sites (multisite catalysis) (Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12101-12105). In the novel studies reported here, and in contrast to the earlier report, we have (a) monitored the kinetics of ATP hydrolysis of F1 by using nucleotide-depleted preparations and a highly sensitive chemiluminescent assay; (b) followed the reaction immediately upon addition of F1 to ATP, rather than after prior incubation with ATP; and (c) used a reaction medium with Pi as the only buffer. The following observations were noted. First, regardless of the source of enzyme, bovine or rat, and catalytic conditions (unisite or multisite), the rates of hydrolysis depend on ATP concentration to the first power. Second, the first order rate constant for ATP hydrolysis remains relatively constant under both unisite and multisite conditions declining only slightly at high ATP concentration. Third, the initial rates of ATP hydrolysis exhibit Michaelis-Menten kinetic behavior with a single Vmax exceeding 100 micromol of ATP hydrolyzed per min/mg of F1 (turnover number = 635 s-1) and a single Km for ATP of about 57 microM. Finally, the reaction is inhibited markedly by low concentrations of ADP. It is concluded that, under the conditions described here, all catalytic sites that participate in the hydrolysis of ATP within the F1 moiety of mitochondrial ATP synthase function in a kinetically equivalent manner.  相似文献   

19.
The conserved glutamate residue at position 65 of the Propionigenium modestum c subunit is directly involved in binding and translocation of Na+ across the membrane. The site-specific introduction of the cQ32I and cS66A substitutions in the putative vicinity to cE65 inhibited growth of the single-site mutants on succinate minimal agar, indicating that both amino acid residues are important for proper function of the oxidative phosphorylation system. This growth inhibition was abolished, however, if the cF84L/cL87V double mutation was additionally present in the P. modestum c subunit. The newly constructed Escherichia coli strain MPC848732I, harboring the cQ32I/cF84L/cL87V triple mutation, revealed a change in the coupling ion specificity from Na+ to H+. ATP hydrolysis by this enzyme was therefore not activated by NaCl, and ATP-driven H+ transport was not affected by this alkali salt. Both activities were influenced, however, by LiCl. These data demonstrate the loss of the Na+ binding site and retention of Li+ and H+ binding sites within this mutant ATPase. In the E. coli strain MPC848766A (cS66A/cF84L/cL87V), the specificity of the ATPase was further restricted to H+ as the exclusive coupling ion. Therefore, neither Na+ nor Li+ stimulated the ATPase activity, and no ATP-driven Li+ transport was observed. The ATPase of the E. coli mutant MPC32N (cQ32N) was activated by NaCl and LiCl. The mutant ATPase exhibited a 5-fold higher Km for NaCl but no change in the Km for LiCl in comparison to that of the parent strain. These results demonstrate that the binding of Na+ to the c subunit of P. modestum requires liganding groups provided by Q32, E65, and S66. For the coordination of Li+, two liganding partners, E65 and S66, are sufficient, and H+ translocation was mediated by E65 alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号