首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图   总被引:4,自引:3,他引:1  
采用Gleeble-1500热模拟实验机在温度为623~773K,应变速率为0.001~1s-1条件下对Mg-10Gd-4.8Y-2Zn-0.6Zr(wt%)合金进行热压缩实验,研究了该合金热变形行为及热加工特征,建立了该合金热变形时的本构方程和加工图.结果表明,该合金高温变形时的峰值应力随着应变速率的降低和变形温度的升高而显著减小;变形激活能为289.36kJ/mol;合金高温变形时存在两个失稳区,分别是变形温度为770~773K,应变速率为0.1s-1左右的区域,和变形温度小于750K,应变速率小于0.03s-1的区域;合金的最佳热加工温度为750~773K,应变速率为0.001~0.01s-1.  相似文献   

2.
通过热压缩试验研究了4043铝合金在变形温度350~500℃和应变速率0.01~10 s~(-1)的热成形性能,建立了合金的本构方程和热加工图。结果表明:变形温度对4043铝合金应变速率敏感系数的影响较小;高温变形主要受位错的热激活能控制;最佳热变形工艺参数是温度460~500℃、应变速率0.05~1 s~(-1)。  相似文献   

3.
在Gleeble-1500热模拟试验机上进行热压缩试验,研究了变形温度为900~1150 ℃,应变速率为0.001~10 s-1的TiC颗粒增强钛基复合材料的热变形行为.根据所得应力应变曲线分析了该合金的热变形特征,计算了α+β区域的平均变形激活能为799 kJ/mol,β区域平均变形激活能为105 kJ/mol.并根据动力学模型建立了加工图,分析了加工图中的高功率耗散区和流变失稳区,确定了不同区域的变形机制.观察了变形后的显微组织.结果表明:在温度范围为900~980 ℃,应变速率范围为0.001~0.1 s-1的低应变速率区域发生了超塑性和动态再结晶;在温度范围为1000~1100 ℃,应变速率范围为0.1~10 s-1的高应变速率区域变形机制主要是由亚晶界迁移扩散控制的动态再结晶.两个流变失稳区分别发生在温度为900~950℃,应变速率为0.1~10 s-1的区域和温度为1080~1130 ℃,应变速率为0.001~0.01 s-1区域.  相似文献   

4.
在温度为300℃~420℃、应变速率为0.001s-1~1s-1的变形条件下,采用Gleeble-1500热模拟机对AZ70镁合金热压缩变形特性进行了研究。结果表明,合金的流变应力随应变速率的增大而增大,随温度的升高而降低;在给定的变形条件下,计算出合金的变形激活能为132kJ/mol,应力指数为6.2;建立了合金高温变形的本构方程;降低变形温度和提高应变速率可使再结晶晶粒平均尺寸减小。根据实验分析得出,材料的最佳热加工工艺条件为变形温度340℃~400℃,应变速率0.001s-1~0.1s-1,并提出以低速为宜。  相似文献   

5.
Al-Zn-Mg-Cu合金热压缩流变应力行为及组织演变   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热力模拟试验机进行了Al-Zn-Mg-Cu合金的等温压缩实验,变形温度为250~450℃,应变速率为0.001~0.1 s-1,变形量为10%~50%,获得了热压缩变形的真应力-真应变曲线.应力-应变曲线基本呈现回复型曲线特征,计算得出其应力指数为4.60,热变形激活能为186.70 kJ·mol-1;综合分析了变形温度、应变速率和变形量对组织演变的影响规律,确定了Al-Zn-Mg-Cu合金的锻造工艺参数为:锻造温度区间420350℃,应变速率0.01~0.1 s-1,变形量>30%.  相似文献   

6.
Pb-Mg-Al合金的热变形行为与加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机研究Pb-Mg-Al合金在变形温度453~613 K、应变速率0.01~1 s-1条件下的热压缩流变行为,计算应力指数和变形激活能,采用Zener-Hollomon参数法构建合金的高温变形的本构关系,基于Murty准则,建立Pb-Mg-Al合金的加工图。结果表明:Pb-Mg-Al合金为正应变速率敏感材料;该合金的热压缩变形流变应力行为可用双曲正弦函数本构方程和Zener-Hollomon参数来描述,其平均变形激活能为149.524 4kJ/mol;从加工图分析并结合激活能,确定Pb-Mg-Al合金的最优变形温度和应变速率分别为533 K和0.1 s-1。  相似文献   

7.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si合金在变形温度为600~800℃、应变速率为0.01~5.00 s-1条件下,分析了合金在高温变形时的流变应力与应变速率及变形温度之间的关系,在热压缩过程中组织的变化.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶,应变速率越小,合金也越容易发生动态再结晶;在同一应变速率下合金动态再结晶的显微组织受到变形温度的影响;利用Arrhenius双曲正弦函数求得Cu-Ni-Si合金热变形激活能为245.4 kJ·mol-1.  相似文献   

8.
喷射成形镍基高温合金热变形特性及微观组织变化   总被引:2,自引:0,他引:2  
康福伟  孙剑飞  张国庆  李周  沈军 《金属学报》2007,43(10):1053-1058
采用Gleeble-1500D热力模拟试验机对喷射成形 热等静压制备的镍基高温合金,在变形温度1050-1140 ℃,应变速率0.01-10.0 s-1,工程应变量50%的条件下进行了热压缩实验.利用实验数据建立了合金的热加工图和热激活能图,对变形过程中组织演化进行了研究.结果表明,热等静压并没有使喷射成形高温合金晶粒尺寸明显长大.真应力-应变曲线出现了屈服降落现象;合金热加工图失稳区出现在温度区间1050-1110 ℃,应变速率0.01 s-1处;在1110-1140 ℃,应变速率1.0-10.0 s-1区间功率耗散值(η)出现最大值;在1140 ℃,应变速率1.0-10.0 s-1区间激活能出现一个小平台区.在变形温度1110-1140 ℃、应变速率1.0-10.0 s-1、变形量50%的条件下,可得到完全再结晶组织,该变形条件与热加工图中功率耗散最大值所在区间和激活能图中小平台区所在区间相对应.  相似文献   

9.
通过温度在350℃-500℃,应变速率在0.001/s-1/s的热压缩实验,本文研究了均匀化态Mg-Gd-Y-Zn-Mn合金热变形行为和加工图。采用双曲线模型,建立了本构方程,计算了激活能为260.94kJ/mol。基于动态材料模型,绘制了应变量为0.6,1.2的均与化态Mg-Gd-Y-Zn-Mn合金的加工图,用于研究材料的热成性。应变量1.2加工图显示适合合金加工的两个安全区域:一个是变形温度460℃-500℃,应变速率0.001/s-1/s;另一个是变形温度350℃-500℃,应变速率0.001/s-0.005/s。同时,讨论了相应的微观组织演变,重点关注了该合金中长程堆垛有序相(LPSO)的变相机制。  相似文献   

10.
在变形温度为300~460℃,应变速率为0.001~1.000 s-1的条件下,采用Gleeble-1500热模拟试验机对7B50铝合金的热变形加工行为进行了研究.结果表明,7B50铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大.对该合金进行热变形加工的适宜条件是:热压缩加工温度为380~460℃、应变速率为0.100~1.000 s-1.在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶.随着温度升高和应变速率降低,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

11.
在Gleeble-1500D热模拟试验机上,通过高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明:在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能(Q)为485.6 kJ/mol和热变形本构方程。根据动态材料模型计算并分析了该合金的热加工图,利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,温度为750~800℃,应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

12.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

13.
在Gleeble-1500热模拟机上进行高温等温压缩试验,研究了Al-Cu-Mg-Ag合金在变形温度为300~500 ℃、应变速率为0.01~10.00 s-1条件下的流变变形行为,建立了Al-Cu-Mg-Ag合金热变形本构方程.结果表明,流变应力随温度的降低、应变速率的提高而增大,在应变速率小于10.00 s-1的条件下,流变应力随应变增加而迅速增大,达到峰值后趋于平稳,表现出动态回复的特征;在应变速率为10.00 s-1,温度大于300 ℃的条件下,应力达到峰值后逐渐下降,并出现锯齿波动现象,表明合金发生了局部动态再结晶;Al-Cu-Mg-Ag合金高温变形时的流变行为可用Zener-Hollomon参数来描述,其变形激活能为160.08 kJ/mol.  相似文献   

14.
采用Gleeble-1500研究了在应变速率为10-3s-1~10-1s-1和变形温度为1000℃~1200℃条件下,真空自耗方法制备180mm直径TiAl合金铸锭的热变形行为,并建立了高温变形的本构方程。结果表明,合金变形的流变应力对温度和应变速率敏感,铸态合金的热变形激活能为335.5kJ/mol,所建立的变形本构方程,可为制定工业尺寸TiAl合金铸锭的热加工工艺提供参考。  相似文献   

15.
采用热模拟压缩试验研究铸态TiNiNb合金在变形温度为700~1050℃、应变速率为0.01~10s-1条件下的热变形特征,基于试验结果建立了铸态TiNiNb合金的热变形本构方程.根据动态材料模型,计算并分析合金的热加工图.利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,加热温度为750~880℃、应变速率为0.3~10s-1,或者加热温度为880~950℃、应变速率为0.01~0.5 s-1.  相似文献   

16.
在Gleeble-3800热模拟机上对具有原始b转变组织的Ti-24Al-17Nb-0.5Mo合金进行单道次热压缩变形试验,研究变形温度在900~1 130 ℃、应变速率在0.01~40 s-1条件下合金的热变形行为,计算该合金的应变速率敏感因子和变形激活能,确定适合峰值应力的流变应力的方程.结果表明:该合金的真应力-真应变曲线在不同的热变形条件下具有不同的特征;合金热变形的峰值应力随温度的升高而降低,随应变速率的增加而增大,合金在不同变形条件下具有不同的应变速率敏感因子和变形激活能.  相似文献   

17.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

18.
GH708高温合金热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

19.
利用Gleeble-1500热模拟实验机对非真空熔铸Cu-0.94Cr-0.34Zr合金进行高温热压缩变形,研究在变形温度为500~800℃、应变速率为0.01 ~1 s-1工作条件下该合金的流变应力行为,建立合金热变形流变应力本构方程及加工图.结果表明:流变应力随变形温度的升高而降低,随应变速率的降低而减小;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系式描述Cu-0.94Cr-0.34Zr合金的热变形行为,建立本构方程,算出其激活能为418.35 kJ/mol.依据动态材料模型,建立热加工图,确定热变形失稳区和安全热加工区域,合金最佳热加工条件为:变形温度775℃,应变速率0.01s-1.  相似文献   

20.
利用Gleeble-1500D热模拟试验机对Cu-0.8Mg合金进行热变形试验,变形温度为500~850℃、应变速率为0.001~10 s-1,研究不同试验条件下合金流变应力的变化规律,分析合金的流变应力、应变速率和变形温度之间的关系,对合金的热加工图进行研究。结果表明:合金在热变形过程中,其流变应力曲线表现出典型的加工硬化、动态回复和再结晶特征,随着变形温度的升高和应变速率的降低,其流变应力和峰值应力也随之降低;合金热变形过程中的激活能为177.88 k J/mol,构建了合金的本构方程;合金在热变形过程中的最优加工参数为:变形温度为700~800℃、应变速率为0.01~0.1 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号