首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用搅拌摩擦焊(FSW)完成了3 mm厚TC4钛合金和2A14-T14铝合金的连接,研究了搅拌头偏移对接头的成形及拉伸性能的影响。结果表明在搅拌头向铝合金侧的偏移对接头的最大抗拉强度有显著的影响。接头最大抗拉强度随搅拌头的偏移量的增加逐渐升高。在偏移量为2.0 mm、搅拌头转速从400 r/min增加到700 r/min时,接头的最大抗拉强度逐渐降低。在偏移量为2.5 mm、接头的最大抗拉强度随转速的增加逐渐升高。当在搅拌头转速为700 r/min, 焊接速度为60 mm/min时,所得接头强度最高,约347 MPa,为铝合金母材的83 %。接头的断裂位置和拉伸强度均取决于微观组织和金属间化合物。对于强度最高的接头,由于TiAl相的生成,接头于铝合金侧热影响区发生断裂。  相似文献   

2.
The pure Zn foils with different thicknesses(0.02, 0.05, 0.1, 0.2 and 0.3 mm) were selected as interlayers to improve the quality of friction stir lap welding joint of 7075-T6 Al and AZ31 B Mg dissimilar alloys. The effects of the interlayer thickness on joint formation, microstructure and tensile strength were analyzed. The results displayed that the maximum length of the boundary between stir zone(SZ) and thermo-mechanically affected zone in lower plate was obtained by the addition of the Zn interlayer with 0.05 mm thickness. The Mg–Zn intermetallic compounds(IMCs) were discontinuously distributed in the SZ, replacing the continuous Al–Mg IMCs. The size of Mg–Zn IMCs increased with the increase in the thickness of the Zn interlayer. The maximum tensile shear strength of 276 N mm-1 was obtained by the addition of 0.05 mm Zn foil, which increased by 45.6% of that of the joint without the Zn foil addition.  相似文献   

3.
5A06/T2异种材料搅拌摩擦焊接头的耐蚀性   总被引:1,自引:0,他引:1  
为了研究Al/Cu异种材料搅拌摩擦焊焊缝的耐腐蚀性能,对4mm的5A06和T2搅拌摩擦焊焊接接头进行了浸泡腐蚀试验。结果表明,焊缝区的耐腐蚀性能比铝合金母材要差,而焊缝铝铜结合过渡区耐腐蚀性能最差,并在该区域产生了腐蚀沟。电子能谱和X射线衍射物相分析结果发现,在过渡区Mg含量比其它区域高,而且有少量Al4Cu9产生,它的自腐蚀电位比铝高,这是导致该区域严重腐蚀的主要原因。  相似文献   

4.
An atomic diffusion model is developed to predict the thickness of intermetallic compounds (IMCs) at the interface of aluminum/magnesium alloys in dissimilar friction stir welding.Both the temperature and the strain rate associated with dislocation density at the checking point are used to determine the diffusion coefficients.The variations of the diffusion coefficients and the thickness of IMCs are quantitatively analyzed at selected characteristic time instants during welding process.It is found that the dislocation density can increase the diffusion coefficient and plays a dominant role in the IMCs formation during the plastic deformation stage.Especially in magnesium alloy and Al12Mg17,the diffusion coefficient is increased by two orders of magnitude or even nearly three orders of magnitude by considering the dislocation density.The temperature is the main influencing factor after the end of plastic deformation.The model is validated by comparing the predicted thickness of IMCs with the experimentally measured results.  相似文献   

5.
在FSW过程中,T型接头的内角热输入低、塑性流动差导致其易出现虫洞、隧道、交界线等缺陷,造成应力集中,很难实现具有良好力学性能的Al/Cu异种焊缝。创新性地将圆角处预置焊丝应用于4 mm厚的6061-T6铝合金和纯铜异种FSW T-搭接接头的连接,以期改善T型接头的内角材料塑性流动,获得具有良好力学性能的接头。分析了3种预置焊丝对Al/Cu异种 FSW T-搭接接头显微组织和力学性能的影响。结果表明,保持焊接速度35 mm/min不变,旋转速度在700~800 r/min条件下,3种预置焊丝接头大针搅拌区都表现出“洋葱环”。阶梯状搅拌头有效抑制了大量筋板材料向壁板的迁移,减少了Al/Cu互混。大针搅拌区由于少量Cu颗粒被搅拌,流动路径长,不易形成金属间化合物。Al/Cu形成了有效的冶金结合,其交界面处金属间化合物厚度小于1 μm。预置Cu的Al/Cu T-接头沿壁板方向像同种材料对接接头,呈韧性断裂;预置Al的Al/Cu T-接头改变交界线缺陷走向,筋板方向获得一定高度的Al/Cu混合区,机械互锁结合效果达到最优,断裂多在交界面处,抗拉伸强度达157 MPa,呈混合断裂。预置焊丝是一种适用于Al/Cu异种FSW T-搭接接头焊接的良好方法。  相似文献   

6.
In this study, the dissimilar friction stir welding(FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests(i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone(SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.  相似文献   

7.
采用扩散焊(DFW)技术制备了Cu/Al双金属,连接温度范围683-803K,连接时间范围20-80min,连接压力15MPa。Cu/Al双金属界面处的SEM试验结果表明,随着焊接温度的升高和保温时间的延长,界面层厚度逐渐增加,在连接温度为803K,连接时间80min,Cu/Al界面处形成了Al4Cu9,Al3Cu4,AlCu、Al2Cu金属间化合物(从铜侧到铝侧),根据扩散动力学,金属间化合物(IMCS)的生成顺序为Al2Cu、Al4Cu9、AlCu、Al3Cu4。Cu / Al双金属的剪切试验显示为脆性断裂,并且界面强度随着IMC的减少而增加。在723 K的焊接温度下进行20分钟焊接后,Cu / Al双金属的剪切强度最高为63.8 MPa。  相似文献   

8.
Al/Cu管异种材料火焰钎焊连接   总被引:6,自引:0,他引:6  
薛松柏  董健  吕晓春  张广生 《焊接》2003,(12):23-25
采用火焰钎焊技术,实现了Al/Cu管异种材料的中温钎焊连接。所采用的改进型的CsF-AlF3钎剂Si粉含量在1%时,钎焊接头的抗裂性能最好。本试验所采用的钎剂具有熔点低、免清洗、无腐蚀、钎剂活性佳和接头抗裂性能好等优点,该技术达到了国内领先水平。  相似文献   

9.
The influences of pin offset on the formation, microstructure and mechanical properties of friction stir welded joint of Ti6 Al4 V and AZ31 B Mg dissimilar alloys were investigated. The results show that sound joints are obtained at different offsets. With the offset decreasing from 2.5 to 2.1 mm, the number of Ti alloy fragments is increased, and the stir zone(SZ) is enlarged and the grains in SZ become coarser. A hook-like structure is formed at the Mg/Ti interface and its length is increased with the decrease in pin offset. The Al element has an enrichment trend at the Ti alloy side near the Mg/Ti interface when the offset is decreased, which is beneficial to the bonding of the interface. An Al-rich layer with a thickness of 3–5μm forms at the offset of 2.1 mm. All the joints fracture at the interface and present a mixed ductile-and-brittle fracture mode. The joint tensile strength is increased with the offset decreasing from 2.5 to 2.1 mm, and the maximum tensile strength of 175 MPa is acquired at the offset of 2.1 mm.  相似文献   

10.
Refi ll friction stir spot welding, also known as friction spot welding(FSpW), is a solid-state welding process suitable for spot joining of lightweight materials. Through the eff orts of improving joint quality for similar and dissimilar materials, for example, aluminum and magnesium, this joining technology is well developed. The joining mechanism and process characteristics of FSpW have been widely studied. However, the application of FSpW in industry has not been entirely successful. In this review article, the research of similar and dissimilar material joints, such as, Al/Cu, Al/Ti, Al/Mg and Al/Steel, is summarized. The microstructural features and mechanical properties of the joints, welding tool and the application development are discussed in detail.  相似文献   

11.
为了提高系列化搅拌摩擦点焊设备的开发效率、降低硬件开发成本,对搅拌摩擦点焊设备单MCU便携控制终端的开发与集成进行了研究。阐述了搅拌摩擦点焊便携控制终端与点焊控制系统集成的开发方法,并对便携控制终端网络通信的实时性、精确性,以及点焊控制系统中解析器的设计进行了详细分析。该便携终端与点焊设备控制系统之间的集成开发方法,已在可移动式搅拌摩擦点焊装备平台上进行了验证,有效提高了便携终端在系列化搅拌摩擦点焊设备中的开发与设计效率。  相似文献   

12.
It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional friction stir welding. Thus, double-side friction stir welding is innovatively applied to join 12-mm medium-thick 6061-T6 aluminum alloy and pure copper dissimilar plates, and the effect of welding speeds on the joint microstructure and mechanical properties of Al/Cu welds is systematically analyzed. It reveals that a sound Al/Cu joint without macroscopic defects can be achieved when the welding speed is lower than 180 mm/min, while a nonuniform relatively thick intermetallic compound (IMC) layer is formed at the Al/Cu interface, resulting in lots of local microcracks within the first-pass weld under the plunging force of the tool during friction stir welding of the second-pass, and seriously deteriorates the mechanical properties of the joint. With the increase of welding speed to more than 300 mm/min void defects appear in the joint, but the joint properties are still better than the welds performed at low welding speed conditions since a continuous uniform thin IMCs layer is formed at the Al/Cu interface. The maximum tensile strength and elongation of Al/Cu weld are, respectively, 135.11 MPa and 6.06%, which is achieved at the welding speed of 400 mm/min. In addition, due to the influence of welding distortion of the first-pass weld, the second-pass weld is more prone to form void defects than the first-pass weld when the same plunge depth is applied on both sides. The double-side friction stir welding is proved to be a good method for dissimilar welding of medium-thick Al/Cu plates.  相似文献   

13.
介绍了铜/铝异种材料钎焊用的几种常见软钎料及其特点、应用及研究现状.本文着重介绍了Sn-Zn和Zn-Al系钎料的特点及应用,分析了目前Sn-Zn和Zn-Al系钎料存在的主要问题,并对Zn-Al系钎料在铜/铝钎焊中的应用前景进行了展望.  相似文献   

14.
以铝代钢是汽车轻量化的有效途径,其中铝/钢异种金属间的焊接是技术关键点.点焊方法灵活高效,是汽车制造过程中铝/钢焊接的一种有效方法.铝/钢异种材料的点焊方法有电阻点焊、搅拌摩擦点焊、激光点焊、胶接点焊等,其中工艺参数的选择是控制金属间化合物的有效因素.综述了各种点焊方法在工业实际生产中的优势与存在的不足,提出了点焊工艺在汽车制造领域铝/钢异种金属连接中的应用前景.  相似文献   

15.
T6-treated 20 wt% B_4 Cp/6061 Al sheets were joined under welding speeds of 400–1200 mm/min by friction stir welding(FSW) with a threaded cermet pin. The macro-defect-free FSW joints could be achieved at high welding speeds up to 1200 mm/min, but larger plunge depth was required at the welding speeds of 800 and 1200 mm/min to eliminate the tunnel defect. In the nugget zone(NZ) of the joints, the B_4 C particles were broken up and uniformly redistributed. The NZ exhibited lower hardness than the base metal(BM), and the hardness value almost did not change with increasing welding speed, attributable to the dissolution of precipitates. Compared with the BM, the joints showed lower tensile strength. As the welding speed increased from 400 to 800 mm/min, the joint efficiencies were nearly the same and up to ~ 73%. When the welding speed increased up to 1200 mm/min, the tensile strength significantly decreased, due to the occurrence of kissing bond defect at the bottom of the NZ. With increasing welding speed, the fracture location of the joints transferred gradually from the heat-affected zone to the NZ due to the kissing bond defects.  相似文献   

16.
焊具是搅拌摩擦焊的核心,对焊接质量起至关重要的作用. 利用不旋转轴肩焊接系统对6061-T6铝和AZ31B镁合金进行连接,重点分析传统和不旋转轴肩焊接系统下接头成形和力学性能等. 结果表明,与传统工艺相比,采用不旋转轴肩工艺的接头表面成形更加光滑,焊核区以典型铝镁混合的叠层结构为主,且铝镁冶金结合界面呈弯曲状,有效地增强了铝镁异种材料的机械咬合效果;焊缝区金属间化合物层明显减小,其主要是由不旋转轴肩增强焊核区材料的搅拌效果并起到“热沉”的作用所致. 采用不旋转轴肩的接头最大抗拉强度为137 MPa,较传统工艺提高了28%.  相似文献   

17.
In this study, fatigue properties and fracture mechanism of dissimilar Al–Mg–Si/Al–Zn–Mg aluminum alloys friction stir welding(FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al–Zn–Mg aluminum alloy was placed at the advancing side(AS). At 10~7 cycles, the fatigue strengths of Al–Zn–Mg–AS and Al–Mg–Si–AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al–Mg–Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al–Zn–Mg–AS joint was associated with the bridging effect of the bigger secondary phase particles.  相似文献   

18.
The microstructure distribution, tensile anisotropy and fracture behaviors in the dissimilar friction stir welded joint of AM60/AZ31 alloys were investigated. Experimental results showed that a significant grain refinement and an orientation fluctuation occurred in the weld. The grain size of AZ31 side in joint was obviously smaller than that of AM60 side. There was a higher percentage of low angle grain boundaries (LAGBs) and a lower degree of recrystallization in AZ31 side compared with those in AM60 side, especially for the thermo-mechanically affected zone in AZ31 side. The discrepancies of grain size distribution, recrystallization behavior and LAGBs in joint depended on the different initial state of two metals and the inhomogeneous temperature distribution in joint. In addition, the (0001) basal plane in weld was roughly parallel to the surface of the pin, showing the symmetrically distributed texture characteristics. The joint showed an obvious tensile anisotropy due to the special texture distribution. The comprehensive tensile properties of joint along the three directions decreased in the order: welding direction, 45° direction and transverse direction. The maximum ultimate tensile strength, yield strength and elongation of the joint were 242 MPa, 116 MPa and 21.2%, respectively. The fluctuations of grain size and texture in joint affected the fracture behavior of samples in the three directions.  相似文献   

19.
利用电阻压焊进行Cu/Al合金异种材料复合管的焊接试验,分析了接头微观组织与界面主要元素的分布特征。结果表明,接头中Cu元素大量扩散溶入Al基体中,形成有害的CuAl2金属间化合物,但是,电阻压焊过程中外加顶锻力使结合区产生剧烈塑性变形,能破碎粗大CuAl2金属间化合物并细化接头熔合区晶粒,有利于改善接头的结合性能,获得优质焊接接头。  相似文献   

20.
Friction stir welding was used to join two aluminum 6061-T6 plates with an insert of a pure copper plate (Al/Cu/Al), and then the influence of the copper insert on the joint performance was studied. The dissimilar welding results were also compared with AA 6061 friction stir welds produced without copper insert (Al/Al). Optical and scanning electron microscopes were used for the microstructural observations of the welded samples. X-ray diffraction analysis was used to analyze phase component of the Al/Cu/Al specimen. A defect-free joint was observed for the Al/Cu/Al joint at a rotational speed of 950 r/min and a welding speed of 50 mm/min. Microstructural observation of the weld nugget zone (WNZ) demonstrates the formation of composite-like structure which promotes metallurgical bonding of aluminum and copper. XRD results show the formation of intermetallic compounds (IMCs), such as Al4Cu9 and Al2Cu. Furthermore, it was observed that the hardness of the weld with the Cu insert plate is higher than that of other samples due to more dislocation density and a distinct rise in hardness values was observed due to the presence of IMCs. The ultimate tensile strength of the joint with copper insert plate is higher than that of the other sample due to the strong metallurgical bonding between Al and Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号