首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refi ll friction stir spot welding, also known as friction spot welding(FSpW), is a solid-state welding process suitable for spot joining of lightweight materials. Through the eff orts of improving joint quality for similar and dissimilar materials, for example, aluminum and magnesium, this joining technology is well developed. The joining mechanism and process characteristics of FSpW have been widely studied. However, the application of FSpW in industry has not been entirely successful. In this review article, the research of similar and dissimilar material joints, such as, Al/Cu, Al/Ti, Al/Mg and Al/Steel, is summarized. The microstructural features and mechanical properties of the joints, welding tool and the application development are discussed in detail.  相似文献   

2.
回填式搅拌摩擦点焊技术(RFSSW)是一种新型的固相点焊技术,它既拥有与搅拌摩擦焊(FSW)相同的效率高、能耗少、易操作和污染少等优点,又可消除匙孔,因此在航空、航天和汽车制造领域中有着广阔的应用前景。自发明以来,回填式搅拌摩擦点焊技术已被应用于各种铝合金、镁合金以及异种材料的焊接。文中综述了回填式搅拌摩擦点焊的研究进展,主要涉及回填式搅拌摩擦点焊的基本原理以及回填式搅拌摩擦点焊接头常见的缺陷、显微组织、力学性能,以及同、异种材料的回填式搅拌摩擦点焊工艺等内容,可对实际工程应用中提高回填式搅拌摩擦点焊接头性能以及合理选择回填式搅拌摩擦点焊工艺参数提供一定的借鉴作用。  相似文献   

3.
It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional friction stir welding. Thus, double-side friction stir welding is innovatively applied to join 12-mm medium-thick 6061-T6 aluminum alloy and pure copper dissimilar plates, and the effect of welding speeds on the joint microstructure and mechanical properties of Al/Cu welds is systematically analyzed. It reveals that a sound Al/Cu joint without macroscopic defects can be achieved when the welding speed is lower than 180 mm/min, while a nonuniform relatively thick intermetallic compound (IMC) layer is formed at the Al/Cu interface, resulting in lots of local microcracks within the first-pass weld under the plunging force of the tool during friction stir welding of the second-pass, and seriously deteriorates the mechanical properties of the joint. With the increase of welding speed to more than 300 mm/min void defects appear in the joint, but the joint properties are still better than the welds performed at low welding speed conditions since a continuous uniform thin IMCs layer is formed at the Al/Cu interface. The maximum tensile strength and elongation of Al/Cu weld are, respectively, 135.11 MPa and 6.06%, which is achieved at the welding speed of 400 mm/min. In addition, due to the influence of welding distortion of the first-pass weld, the second-pass weld is more prone to form void defects than the first-pass weld when the same plunge depth is applied on both sides. The double-side friction stir welding is proved to be a good method for dissimilar welding of medium-thick Al/Cu plates.  相似文献   

4.
Abstract

The microstructural features and overlap shear strength properties of friction stir spot welds made between Al 6111 and low carbon steel, and between Mg alloy AM60 and DP600 dual phase steel, are investigated. When Al 6111 is the upper sheet in the dissimilar sandwich, completed spot welds show evidence of intermetallic layer formation and cracking. Increasing tool pin penetration into the lower sheet provided increased mechanical interlocking of the sheets due to clinching. However, increasing penetration also promoted intermetallic formation and cracking in completed welds. However, dissimilar AM60/DP600 steel friction stir spot welds produced with AM60 as the upper sheet in the dissimilar sandwich do not show evidence of intermetallic formation and cracking may be avoided by removing the zinc coating on the DP600 steel before the friction stir spot welding operation.  相似文献   

5.
借助超声波辅助的方法对铝/钛异种合金进行搅拌摩擦搭接,研究超声波作用对接头的成形和组织的影响. 结果表明,当超声波施加在铝板时,接头的钩状缺陷较高,且会出现孔洞缺陷;当超声施加在钛板时,接头无缺陷. 超声振动能够增大铝/钛界面扩散层的厚度,对接头性能的提高起到一定的促进作用. 当搅拌头转速为300 r/min时,界面扩散层厚度较薄;当搅拌头转速升高至500 r/min时,界面生成一层厚度约为1 μm的金属间化合物. 超声辅助焊接可明显提高接头的断裂载荷.  相似文献   

6.
Abstract

The peak temperatures during friction stir spot welding of similar and dissimilar aluminium and magnesium alloys are investigated. The peak temperatures attained during friction stir spot welding of Al 6111, Al 2024, and AZ91 are within 6% of their solidus temperatures. In dissimilar AZ91/Al 6111 spot welds the peak temperature corresponds with the α-Mg solid solution and Mg17Al12 eutectic temperature of 437°C. An a-Mg plus Mg17Al12 eutectic microstructure is produced in dissimilar friction stir spot welds when material displaced during pin penetration into the lower sheet material contacts the upper sheet material at the eutectic temperature.  相似文献   

7.
为了改善铝-铜搅拌摩擦焊对接接头的焊缝接头性能,文中采用对焊缝铜一侧引入外加热源的方法,来增加焊接热输入,提高铜侧材料的软化程度.结果表明,外加热源能够有效提高焊缝部位铜一侧的焊接温度,从而增加焊接过程中铜一侧的塑化流动性,形成成形良好的焊接接头.通过焊缝的物相对比可知,外加热源引起的温度场的改变,有效地减少了焊缝中CuAl,CuAl2等中间相的含量,增加了铜颗粒在焊缝中的含量.在力学性能上表现为有外加热源的焊缝拉伸强度较高,显微硬度分布均匀.  相似文献   

8.
LY12铝合金摩擦点焊工艺及力学性能   总被引:3,自引:0,他引:3  
摩擦点焊是在搅拌摩擦焊基础上开发的一种新型固态连接技术.针对2 mm厚的LY12铝合金,研究了摩擦点焊过程中的焊接工艺参数对焊点成形及力学性能的影响.结果表明,当焊接时间一定,搅拌头旋转速度较高时,焊点的表面成形较好;随着搅拌头旋转速度的降低,焊点的表面成形逐渐变差.焊点的抗剪载荷随搅拌头旋转速度增加呈现出先增大后减小的趋势,当搅拌头旋转速度为950 r/min、焊接时间为8 s时,焊点的抗剪载荷达到最大值,为9.33 kN/点.焊点横截面的显微硬度测试结果表明,显微硬度沿匙孔中心呈高-低-较高-低-高的"W"形分布,最小值出现在热影响区,塑性区的显微硬度较高,但略小于母材.  相似文献   

9.
Friction stir brazing (FSB) was developed for dissimilar joining to overcome the problems associated with friction stir lap welding (e.g. pin wear, narrow bonded area, hook defect) by metallurgical reaction instead of plastic flow. To enhance the thermomechanical effect of the rotating shoulder, a pin free tool with a large shoulder of 30 mm diameter was used in FSB of 5 mm thick Al/Cu plates in stepped lap configuration with Zn braze. Compared to the case using common tool of 20 mm diameter, it was found that although the intermetallic compound (IMC) layer grew thickly, it was disrupted into particles, and end crack within thick IMC layer was eliminated. As a result, the joint fractured not along interface and the fracture load increased by as much as 2271 N. This work proposed an approach to disrupting continuous IMC into particles by enhancing the mechanical effect of rotating shoulder.  相似文献   

10.
Two dissimilar materials, aluminum alloy Al5083-O and advanced high strength steel DP590, were successfully joined by using friction stir spot joining (FSSJ). Satisfactory joint strengths were obtained at a rotational speed of 300 rpm and a plunge depth of 0.7 mm. Resulting joints were welded without a non-welded zone. This may be attributed to the enhanced smooth material flow owing to sufficient stirring effect and tool down force between the upper Al5083-O side and the lower DP590 side. The maximum tensile shear strength was 6.5 kN, which was higher than the joint strength required by the conventional method of resistance spot welding. The main fracture mode was plug fracture in the tensile shear test of joints. An intermetallic compound (IMC) layer with <6 μm thickness was formed at the joint interface, which meets the allowance value of <10 μm for the dissimilar material Al-Fe joints. Thus, the use of FSSJ to weld the dissimilar materials Al5083-O and DP590 resulted in mechanically and metallurgically sound joints.  相似文献   

11.
Abstract

In this paper, an examination of dissimilar wrought and heat treated AZ31 spot welds (AZ31/AZ31HT) was conducted to allow visualisation of material flow based on their differing etching characteristics. The results indicated that dissimilar AZ31/AZ31HT welds could successfully mirror the material flow in friction stir spot welding. The upper sheet material moved downwards towards the rotational pin, whereas the lower sheet material displaced upwards and outwards during the penetrate stage, and then moved inwards towards the keyhole after reached the base of the shoulder.  相似文献   

12.
Aluminium alloy sheets were joined to stainless steel ones by a resistance spot welding method using Al–Mg alloy interlayer. The interlayer exhibits a lower melting point than the Al alloy. Consequently, melted interlayer with a lower temperature filled the gap between the two sheets and resulted in effective joining. Subsequently, tensile shear fatigue tests had been conducted to evaluate fatigue strength and to determine the fatigue fracture mechanism. Resistance spot welding dissimilar welds exhibited higher fatigue strengths than friction stir spot welded dissimilar ones. Fatigue fracture modes were dependent on the load levels, where plug type fracture occurred at high load levels, shear fracture through the nugget at medium load levels and through thickness fatigue crack propagation in the Al sheet at low load levels. The fracture mode transition was attributed to the geometrical rotation around the nugget.  相似文献   

13.
There has always been a question about which condition results in superior mechanical properties in friction stir spot welds: (i) when the tool tip penetrates into the lower sheet or (ii) when the tool tip does not touch it. Given the question, the effects of the tool penetration depth were investigated on the microstructure and mechanical behaviour of dissimilar Al-5083/St-12 joints produced by friction stir spot welding (FSSW). Two different processes named as non-penetrating and penetrating FSSW were used. Optical and scanning electron microscopes as well as microhardness and tensile–shear tests were utilised to examine the obtained joints. The results showed that the penetrating process led to the stronger joints with lower fracture energy. The differences were studied in the light of the joining mechanisms and the formation of Al/Fe intermetallic compounds.  相似文献   

14.
采用搅拌摩擦焊技术成功焊接了铝-铜异种金属搭接接头,研究了铝-铜FSW焊缝界面宏观形貌、组织行为特征及其与焊接热输入变化的相关性,揭示出铝-铜FSW焊缝界面行为演变的基本规律.结果表明,在相应的焊接工艺参数下,单位时间、单位焊缝长度的热输入越大,铝-铜界面越容易发生共晶反应,生成Al-CuAl2共晶体组织,直接影响焊接宏观接头抗剪力学性能,而随着热输入的减小,共晶反应程度及范围减小;也就是说,热输入的减少可明显抑制共晶反应的发生.  相似文献   

15.
铝/镁异种金属复合结构在结构轻量化领域具有极大的应用价值。采用新型搅拌摩擦点焊-钎焊技术(friction stir spot welding-brazing,FSSW-B)对铝/镁异种金属进行搭接点焊,同时与搅拌摩擦钎焊(friction stir spot brazing,FSSB)工艺进行对比,研究焊接工具中搅拌针的存在对接头界面组织与力学性能的影响。FSSW-B接头界面中间层分为明显上下2个部分,上层界面主要为MgZn2相,下层界面主要为Mg7Zn3相;FSSB接头主要为MgZn2相。接头的断裂模式主要为界面剥离断裂,由于搅拌针的存在,出现了眉状断裂模式。搅拌针的存在提高了接头的抗拉剪性能与疲劳性能,FSSW-B接头的最大抗拉剪力为7600 N,疲劳极限为3366.6 N;搅拌针使抗拉剪性能提升了53.5%,使疲劳性能提升了11.4%;FSSW-B中搅拌针的存在增加了接头疲劳性能的分散性。  相似文献   

16.
搅拌摩擦焊(FSW)是近几年发展较快的新型摩擦焊接技术.国内外研究较多的是铝合金及异种铝合金的搅拌摩擦焊接,但对铝/铜异种搅拌摩擦焊接的研究尚不多见.在此通过大量试验,分别在900-1500 rpm、20-50mm/min范围内调整搅拌旋转速度和焊接速度,优化焊缝的成形质量.结果表明,优化工艺参数可以实现铝/铜异种金属...  相似文献   

17.
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.  相似文献   

18.
A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.  相似文献   

19.
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy (Al5052) with copper alloy (C27200) and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed–plunge depth diagrams for effective joining of these materials were developed. Using a central composite design model, empirical relations were developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three process parameters such as tool rotational speed, plunge depth and dwell time. The adequacy of the developed model was verified using ANOVA analysis at 95% confidence level. Response surface methodology was used to optimize the developed model to maximize tensile strength and minimize interface hardness. A high tensile shear failure load value of 3850 N and low interface hardness value of HV 81 was observed for joints made under optimum conditions, and validation experiments confirmed the high predictability of the developed model with error less than 2%. The operating windows developed shall act as reference maps for future design engineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.  相似文献   

20.
Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号