首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的提高材料在交变载荷和高温下的疲劳性能,稳定材料的位错结构,增加位错的钉扎效果,使激光诱导的残余压应力更加稳定,有效地抑制强化效果的高温失稳。方法通过提高温度发生动态应变时效(DSA),并与激光冲击温强化(WLSP)结合,使得材料表面形成更深的残余应力层和纳米级沉淀相。对TC17钛合金温控激光冲击强化后的显微硬度、残余应力等性能进行了初步探索。结果经200℃的WLSP后,TC17钛合金的显微硬度可达385HV,相比未强化时提高了18.48%,相比于室温的LSP提高了4.62%。深度方向的残余压应力幅值呈现先增大后减小的趋势,200℃时残余应力达到-236 MPa,相比于常温强化提高了14.56%。观察微观组织发现,位错结构的稳定性和位错密度得到提高。结论激光冲击温强化(WLSP)技术提高了材料表面残余压应力层的高温稳定性,有利于抑制疲劳裂纹的萌生和扩展,有效地提高了高温条件下残余应力和表面强度的稳定性。该技术操作相对简单,无污染,残余应力高温维稳效果显著。  相似文献   

2.
通过选区激光熔化(SLM)技术制备了IN718合金,利用X射线显微镜、X射线衍射仪、扫描电镜和电子背散射衍射等技术分析了IN718合金的致密性、相组成和晶粒形态以及取向关系。结果表明:SLM成形IN718合金的物相组成为面心立方结构的γ-Ni相与体心四方结构的γ″相,晶粒沿构建方向呈柱状晶。当激光扫描间距为100 μm时合金的致密度达到最高,当激光扫描间距为90 μm时,合金沿构建方向形成强<001>织构。  相似文献   

3.
Thermal engineered laser shock peening (LSP) is a technique combining warm laser shock peening (WLSP) with subsequent post-shock tempering treatment to optimize the surface strength and fatigue performance of metallic materials. This technique integrates the advantages of LSP, dynamic strain aging (DSA), dynamic precipitation (DP) and post-shock tempering to obtain optimized microstructures for extending fatigue life, such as nanoprecipitates and highly dense dislocations. In this work, AISI 4140 steel is used to evaluate the thermal engineered LSP process. The resulting microstructures as well as mechanical properties are studied under various processing conditions. The mechanism underlying the improvements in fatigue performance is investigated. It is found that the extended fatigue life is mainly caused by the enhanced cyclic stability of compressive residual stress as well as surface strength. This improved material stability and reliability are attributed to the enhanced dislocation pinning effect corresponding to the number density, size and space distribution of nanoprecipitates, which could be tailored by manipulating the WLSP processing conditions and by post-shock tempering. The effects of the precipitate parameters on the precipitation kinetics as well as on the dislocation pinning strength are discussed.  相似文献   

4.
针对Inconel 718合金的不同用途,分析研究了4种常用热处理工艺对Inconel 718合金组织和力学性能的影响。结果表明:固溶温度超过1020℃时,奥氏体晶粒显著长大。合金中主要析出相有MC、δ、γ’和γ″相。δ相沿晶界分布,1025℃固溶时呈颗粒状少量析出;950℃固溶时呈块状大量析出;直接时效时呈网状不连续分布。同时,δ相对合金的晶粒度影响较大,且其析出数量和形态决定了合金的韧塑性,γ″、γ’相的析出量和尺寸与晶粒尺寸决定了合金的强度变化。  相似文献   

5.
High cycle fatigue tests of a cast Al-12Si-CuNiMg alloy are carried out under different stress amplitudes at room temperature. The scanning and transmission electron microscopy observations are used to examine the fracture surfaces and dislocation structures of the tested material, respectively. The results show that the fatigue damage originates from the microstructural defects, and the fracture surface morphology is typical quasi-cleavage fracture. With the increasing strain amplitude, the material fatigue life obviously decreases; however, the dislocation density increases significantly, which leads to the formation of the dislocation walls and cells. Under the cycle loading, the eutectic Si phase and the secondary particles undergo fracture. The pinning effect of the precipitates on the dislocations becomes obvious, indicating that the Al-12Si-CuNiMg alloy has the cyclic hardening characteristic.  相似文献   

6.
The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 °C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.  相似文献   

7.
CONSTITUTIVERELATIONSHIPOFSUPERALLOYIN718J.M.Zhang;L.Z.Ma;J.Y.Zhuang;Q.Deng;J.HDuandZ.YZhong(DepartmentofSuperalloys,CentralI...  相似文献   

8.
By the combination of transmission electron microscope, neutron diffraction and small-angle neutron scattering methods, mechanical fatigue behavior of AL6XN austenitic stainless steel was investigated in the temperature range of 400–600 °C. At 400 °C, in addition to the occurrence of dynamic strain aging, the formation of short-range order was evidenced from the forbidden electron diffraction spot of 1/3 {422} in face-centered cubic(fcc) structure viewed down [111] zone axis, which facilitate the planar slip mode of dislocation and result in the work hardening during the fatigue deformation. The fatigue damage is mainly dominated by the accumulation of planar slip band and the interaction among various slip systems. With increasing temperature, precipitates of chi phase, Laves phase and sigma phase were formed during the fatigue tests at 500 and 600 °C. An increase in precipitation content at 600 °C has also been confirmed by both scanning electron microscope and small-angle neutron scattering analysis. The dislocation pileup originating from the uncoordinated deformation between precipitate and austenitic matrix is an important fatigue damage leading to crack. The continuous cycle softening behavior was also observed on the fatigue curve at 600 °C, which is considered to be caused by dynamic recovery.  相似文献   

9.
The effect of phosphorus on the precipitations of γ",γ' and δ phases and associated tensile properties in IN718C alloy are investigated in this study.It is revealed that P atoms are dissolved in the grain interior to a relatively high degree and hence influence the precipitation behaviors in the grain interior and improve the tensile strength of IN718C alloy.γ" and γ' phases did not precipitate in the alloy without P addition during air cooling,while γ" and γ' phases precipitated in the grain interior during air cooling in the alloys with P addition,and the amounts of γ" and γ' phases increased with increasing P content.Therefore,the Vickers micro-hardness in the as-cast state increased gradually with increasing P content.In double-aging state,the sizes of γ" and γ' phases in the alloys with P addition were larger than that in the alloy without P addition,while the sizes were invariable when the P content(wt%)was higher than 0.015.Therefore,the micro-hardness and tensile strength of IN718C alloy treated by double aging increased first and then kept invariable with increasing P content.The precipitations of δ phases both in the grain interior and on grain boundaries were inhibited by P markedly.The inhibitory effect of P on δ phase enhanced gradually with increasing content of P,but the plasticity increased first and then decreased.What is more,the crack tended to propagate into the matrix around the particles(Laves phases and NbC carbides)in the alloys without P addition at the beginning of the tensile fracture,while it tended to propagate along the interfaces between the matrix and those particles in the alloys with P addition,which resulted from the synthetical effect of P on γ" γ' and δ phases.  相似文献   

10.
In this article the results of a recent study designed to improve our understanding of the cyclic fatigue and fracture characteristics of a spray atomized and deposited hypereutectic aluminum-silicon alloy are presented. Specimens of the alloy were cyclically deformed to failure at ambient temperature under fully reversed total strain amplitude controlled tension-compression loading. The alloy exhibited low cyclic plasticity and fatigue life under total strain amplitude controlled deformation. Cyclic stress amplitude controlled high-cycle fatigue characteristics were established at an elevated temperature (150 °C). The cyclic stress response, high-cycle fatigue life and fracture characteristics of the alloy are compared with a conventional ingot metallurgy processed counterpart and discussed in light of intrinsic microstructural features, nature and magnitude of stress, and ductility of the material.  相似文献   

11.
The microstructure and mechanical properties of the laser welded joint of DZ125L and IN718 nickel base superalloys were investigated. The results show that the fusion zone (FZ) mainly consists of fine dendrite structure with fine γ′, Laves phases and MC carbides inhomogeneously distributed. The high welding temperature induces the partial dissolution of γ′ in the heat-affected zone (HAZ) of DZ125L and liquation of grain boundaries in both of the HAZs. After post-weld heat treatment (PWHT), fine γ″ and γ′ phases precipitate in the FZ, IN718 HAZ and IN718 base metal (BM), and fine γ′ precipitate in the γ channel of the HAZ and BM of DZ125L. With tensile testing, the joints after PWHT show higher strengths than that of the weaker DZ125L alloy. Plastic deformation mainly concentrates in the weaker DZ125L and the joint finally fails in the DZ125L BM.  相似文献   

12.
Fatigue fracture is the major threat to the railway axle, which can be avoided or delayed by surface strengthening. In this study, a low-carbon alloy axle steel with two states was treated by surface induction hardening and shot peening, respectively, to reveal the mechanism of fatigue property improvement by microstructure characterization, microhardness measurement, residual stress analysis, roughness measurement, and rotary bending fatigue tests. The results indicate that both quenching and t...  相似文献   

13.
对IN718合金进行二次固溶处理,研究了二次固溶处理对其组织及高温拉伸性能的影响。结果表明,经二次固溶处理后,IN718合金组织中δ相含量较一次固溶增加,高温屈服强度降低。随二次固溶温度升高,δ相析出减少,高温屈服强度升高。  相似文献   

14.
分别采用0.3MPa、0.45MPa和0.6MPa喷丸压力对GH3535高温合金表面进行喷丸。利用扫描电子显微镜(SEM)观察合金表面形貌、强化层组织结构,通过金相显微镜(OM)、维氏硬度计、X射线应力分析仪分析表层晶粒度、表层显微硬度、表层残余应力分布及X射线衍射峰半高宽。在室温条件下进行高周疲劳实验,并通过扫描电子显微镜(SEM)观察分析断口形貌特征。结果表明:GH3535合金喷丸后表层形成了晶粒细化层、硬化层和残余压应力层。且合金表面产生的晶粒细化层厚度、硬化层厚度以及残余压应力层厚度均随着喷丸压力的增加而提高。喷丸压力在0.3MPa~0.6MPa范围内,疲劳寿命受喷丸压力的影响较为敏感,且疲劳寿命随着喷丸压力的增加而提高。当喷丸压力为0.6MPa时,喷丸产生的效果最优,疲劳寿命提高了471.1%。喷丸后GH3535合金疲劳寿命的提高得益于合金表面状态的改善。  相似文献   

15.
喷丸强化对TC4钛合金组织结构的影响   总被引:14,自引:0,他引:14  
对TC4钛合金试样进行喷丸强化,采用OM、SEM、TEM等技术对喷丸强化试样的组织结构进行观察分析。结合显微硬度沿表层的分布,分析喷丸强化变形层的组织结构特征和加工硬化机制。结果表明,喷丸强化后位错的运动和组态的变化使TC4钛合金表层的组织和亚结构细化,而且可以在表层强变形区形成孪晶,从而产生强烈的加工硬化效应。  相似文献   

16.
Inconel alloys including IN 718 alloy are widely used in turbomachinery industry due to their superior mechanical properties. Inconel alloys are very difficult to machine using cutting and grinding. Wire electrical discharge machining (W-EDM) is an alternative process to manufacture complex Inconel parts. However, little research has been done on surface integrity by W-EDMed IN 718. This study focuses on surface integrity of IN 718 by W-EDM at different modes of discharge energy. The results show that the EDMed surface topography shows dominant coral reef microstructures at high energy mode, while random microvoids are dominant at low energy modes. The average roughness can be significantly reduced at low energy mode. A thick white layer is predominantly discontinuous and non-uniform at relative high energy modes. Microvoids are confined within the thick white layers and no microcracks were found in the subsurface. A thin white layer by trim cut at low energy mode becomes continuous, uniform, and is free of voids. Compared to the bulk, white layers have dramatic reduction in microhardness. In addition, surface alloying from wire electrode and water dielectric is obvious in main cut, but it can be minimized in trim cuts.  相似文献   

17.
Inconel718合金金属注射成形制备过程及力学性能   总被引:1,自引:0,他引:1  
以Inconel718气雾化预合金粉末为原料,采用金属注射成形(MIM)工艺制备Inconel718合金材料.研究Inconel718合金烧结、热等静压(HIP)、热处理对合金显微组织、密度和力学性能的影响.结果表明:经1275 ℃烧结后,烧结体的相对密度达到98%.烧结体经HIP处理后,达到全致密.经烧结+HIP+热处理后,组织弥散析出了大量的γ″相和γ′相,其室温抗拉强度为1250 MPa,延伸率为21.7%;650 ℃抗拉强度为1177 MPa,延伸率为16.6%,其达到或超过了同牌号锻造合金的性能.  相似文献   

18.
It is commonly accepted that the drop in mechanical properties of INCONE1718(IN718) after long time exposure at high temperature is a result of coalescence ofγ", γ and the transformation ofγ′ to δ-Ni3Nb phase. Besides the γ′, γ and δ,the precipitation of B.C.C. α-Cr is another factor that affects the mechanical properties of IN718. In this paper, the Thermal-Calc software is used to reveal the thermodynamic condition of α-Cr formation. The calculated sections of the pseudo ternary diagrams of Cr-Nb-IN718 and Cr-Fe-IN718 explain why α-Cr particles do not precipitate dispersedly in γmatrix but in the vicinity of δ phase. The selected area diffraction (SAD) of TEM confirms the crystallography relationship of α-Cr with δ is (010) δ// (-110) α-Cr, [100] δ//[111] α-Cr° In combination of TTT diagram with the Thermal-Calc and TEM results, the mechanism of α-Cr formation in IN718 is suggested.  相似文献   

19.
Ni-base superalloy IN 718 was cyclically oxidized in laboratory air at temperatures ranging from 750 to 950 °C for up to 12 cycles (14 h/cycle). The kinetic behaviour as well as the surface morphology, and the oxide phases of the scales were characterized by means of weight gain measurements, cyclic oxidation kinetics, scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) analysis techniques. The results showed that as the oxidation temperature increased, the oxidation rate, the external scale thickness, and internal oxidation zone increased. It was suggested that the oxidation rate was controlled by the diffusion of substrate elements in the alloy and the inward diffusion of oxygen through the oxide scale. The oxidation kinetics followed a sub-parabolic rate law and, the activation energy of oxidation was 249 ± 20 kJ mol?1. The scaling process was controlled mainly by the diffusion of chromium, titanium, manganese, and oxygen ions through the chromia scale. IN 718 showed low weight gain and very slow reaction rates of substrate elements at 750 °C. At 850 °C, a continuous and very thin oxide scale was formed. At 950 °C, XRD and EDS-elemental mapping analysis revealed that a complex oxide scale had formed. It consisted of an outermost layer of TiO2?CMnCr2O4 spinels, inner layer of Cr2O3, and the inner most layer composed of Ni3Nb enriched with Nb, Ti and Al oxides underneath the chromia layer. The oxide scale at this temperature seemed to be thicker layer, significant spallation and volatilization had apparently occurred, and greater internal corrosion was identified. The doping effect of titanium was observed, where it was found to be diffused through the chromia scale to form TiO2 at the oxide-gas interface as well as internally and at the oxide alloy interface. The amount of rutile (TiO2) at the oxide surface increased with temperature. In view of Mn contents in the alloy, the manganese?Cchromium spinel oxide was inferred to have played an important role in cyclic oxidation behaviour of IN 718, where the change in oxidation kinetic was noted. The Al contents would cause internal Al-rich oxide formation at grain boundaries.  相似文献   

20.
In this work, the eff ect of microstructure on hot deformation behavior of ATI 718Plus(hereinafter refers to 718Plus) alloy was studied by isothermal compression test. The results showed that when the strain rate was 0.01–0.1 s-1 with deformation temperature of 980 and 1030 °C, hot deformation behavior was mainly aff ected by dislocation density. Dislocation density of the air-cooling alloy was larger than that of the furnace-cooling alloy, which makes its critical strain smaller and ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号