首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了Mg-8Al-Sr-xCa合金的显微组织和力学性能。铸态合金组织主要由α-Mg相和β-Mg17Al12相组成。在Ca添加至1.5%(质量分数,下同)后,形成少量Al2Ca颗粒。挤压过程中合金发生了动态再结晶,晶粒明显细化,同时第二相碎化,时效后组织中的β相趋于球形。拉伸结果显示,在Ca含量由0.5%增至1.5%时,铸态和挤压时效态合金的拉伸性能逐渐提高。挤压时效态AJ80+1.5%Ca的屈服强度和抗拉强度分别为274 MPa和327 MPa,该合金优异的拉伸强度主要是细晶强化和Al2Ca颗粒与含Ca的β-Mg17Al12相析出强化的结果。  相似文献   

2.
通过OM、SEM、XRD和拉伸试验研究热、冷轧中间固溶/时效处理对MA18镁锂合金轧制板材组织和拉伸性能的影响。结果表明:中间固溶/时效处理的轧制板材(RWQAR)比直接轧制(RR)的MA18合金板材晶粒细小,形成的第二相更多,同时存在明显的Al3(La+Ce)相。中间固溶时效处理可提高MA18合金板材的抗拉强度和屈服强度,但伸长率较直接进行冷轧的板材略微降低。中间固溶时效后的冷轧MA18合金板材拥有最佳的综合拉伸力学性能:抗拉强度207 MPa,屈服强度168 MPa,伸长率39%。  相似文献   

3.
采用等通道转角挤压(ECAP)Bc路径对固溶态Mg-3.52Sn-3.32Al合金分别挤压1、4和8道次。利用光学显微镜、扫描电子显微镜、透射电子显微镜和X射线衍射仪分析合金的组织和相组成,并测试了其室温拉伸性能。结果表明,经ECAP挤压后,固溶态合金组织中析出大量细小的Mg2Sn相和极少量的Mg17Al12相。随挤压道次增加,合金的综合力学性能先提高后降低。经4道次挤压后,合金的综合拉伸性能相对较佳,抗拉强度、伸长率和硬度HV9.8分别达到250 MPa、20.5%和613 MPa,较未ECAP时分别提高43.7%、105%和26.9%。经ECAP挤压的合金室温拉伸断口均呈韧性断裂。等通道转角挤压Mg-3.52Sn-3.32Al合金的力学性能受晶粒尺寸、析出相以及组织织构的共同影响。  相似文献   

4.
用挤压轧制方法制备了厚度为1 mm的Mg-2Zn-0.5Nd-0.5Zr合金板材,并对板材进行后续退火和时效热处理,利用光学显微镜、扫描电镜、拉伸、电化学以及浸泡试验等研究了不同轧制温度和热处理对板材力学性能和耐蚀性能的影响.结果 表明:轧制温度从280℃升高到330℃,合金中的Nd元素析出量减少,第二相形貌改变,板材塑性和耐蚀性提高,伸长率由9.1%提高到15.2%,腐蚀速率由0.48 mm/y降低到0.28 mm/y.退火后板材伸长率和耐蚀性均进一步提高,其中330℃+T2处理的合金板材的综合性能最好,其抗拉强度和屈服强度分别为235 MPa和158 MPa,伸长率为24.3%,腐蚀速率为0.12 mm/y.时效处理后,合金的晶界处有大量的析出相析出,第二相强化效果显著,330℃+T6组的抗拉强度和屈服强度最高,分别为275.8 MPa和255.5 MPa,但板材伸长率仅为7.6%,腐蚀速率升高到0.43 mm/y.  相似文献   

5.
利用光学显微镜、扫描电子显微镜、X射线衍射分析仪和电子材料试验机分别研究了铸态和挤压态Mg-8Sn-4Zn-2Al合金的微观组织和力学性能。结果表明,铸态Mg-8Sn-4Zn-2Al合金主要由!-Mg相、在晶界处分布的网状共晶相(!-Mg+Mg2Sn)以及一些在晶内分布游离第二相颗粒(Mg32(Al,Zn)49)组成,平均二次枝晶间距为16.12μm,挤压(温度300℃,挤压速度0.1 mm/s,挤压比16)后,合金主要由动态再结晶晶粒和破碎的第二相形成的挤压条带组成,合金的平均晶粒尺寸为4.71μm。挤压态合金的屈服强度,抗拉强度和伸长率分别为196 N/mm~2,311 N/mm~2和18.3%。挤压态合金的强度提高是晶界强化、弥散强化和织构强化共同作用的结果。  相似文献   

6.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)及万能拉伸机等研究了不同温轧温度及累积压下率对双辊铸轧6061铝合金板材组织性能的影响。结果表明,6061铝合金铸轧板组织主要由耐热相Al0.7Fe3Si0.3、Al9Fe0.84Mn2.16Si及少量强化相Mg2Si组成。合金中第二相随温轧道次递增逐渐由网格状、片状转变为沿轧制方向的线条状,最终变为细小的颗粒状。温轧后,有新的析出相Al0.5Fe3Si0.5产生,且Mg2Si相的数量增多。6061铝合金铸轧板较为适宜的温轧工艺为:370℃轧制+80%累积压下率,此时铸轧板热处理后的屈服强度、抗拉强度和伸长率分别88.48 MPa,318.76 MPa和20.53%。  相似文献   

7.
采用等通道转角挤压(ECAP)Bc路径对固溶态Mg-3.52Sn-3.32Al合金分别挤压1、4和8道次。利用光学显微镜、扫描电子显微镜、透射电子显微镜和X射线衍射仪分析合金的组织和相组成,并测试了其室温拉伸力学性能。结果表明,经ECAP挤压后,固溶态合金组织中析出大量细小的Mg2Sn相和极少量的Mg17Al12相。随挤压道次增加,合金的综合力学性能先提高后降低。经4道次挤压后,合金的综合拉伸力学性能相对较佳,抗拉强度、伸长率和硬度分别达到250 MPa、20.5%和61.3 HV9.8,较未ECAP时分别提高43.7%、105%和26.9%。经ECAP挤压的合金室温拉伸断口均呈韧性断裂。等通道转角挤压Mg-3.52Sn-3.32Al合金的力学性能受晶粒尺寸、析出相以及组织织构的共同影响。  相似文献   

8.
采用XRD、SEM、EDS和拉伸试验,研究添加Zn元素前后铸态和等通道转角挤压(ECAP)态Mg15Al高铝镁合金的组织和力学性能。结果表明,Zn添加到Mg15Al合金中,主要固溶于β-Mg17Al12相,不生成新相。能够促进铸态Mg15Al合金中α-Mg晶粒细化,使β-Mg17Al12相质量分数增加,以及网状化加剧;使ECAP挤压后Mg15Al-1Zn合金中α-Mg基体晶粒平均尺寸由ECAP态Mg15Al合金的11.3μm减少到8.73μm,促进了β-Mg17Al12相的碎化和均匀分布;ECAP挤压能显著提高Mg15Al-1Zn和Mg15Al合金的综合力学性能,ECAP态Mg15Al-1Zn合金的抗拉强度较铸态合金提高了86%,ECAP态Mg15Al合金抗拉强度较铸态提高了60%,而且在屈服强度和塑性变化不大的情况下,ECAP态Mg15Al-1Zn合金比ECAP态Mg15Al合金室温抗拉强度提高了61.8MPa。说明Zn元素添加,能促进ECAP挤压对Mg15Al合金的晶粒细化效果,提高合金的综合力学性能。  相似文献   

9.
钪对镁-铝-锌合金显微组织与力学性能的影响   总被引:1,自引:0,他引:1  
通过铸锭冶金及形变热处理工艺,制备了含0.3%Sc的Mg-llAl-1.2Zn(质量分数)合金.采用X射线衍射、金相及扫描电镜观察与拉伸性能测试,研究微量钪在基体合金中的作用与存在形式.结果表明,基体合金中添加0.3%Sc后,合金的晶粒明显得到细化,Mg17Al12相的形态与分布得到有效改善.合金的相组成主要由a-Mg基体相、Mg17Al12相及MgAlSc相组成.同时,0.3%Sc的添加也提高了挤压态合金在室温与高温下抗拉强度,室温时的抗拉强度达到340MPa,而伸长率超过了10%.  相似文献   

10.
对Mg-6Zn-x Cu-0.6Zr(x=0,0.5,1.0,1.5)合金进行了熔炼并浇注在金属模中,然后进行了挤压成形试验。结果表明:铸态合金随着Cu含量的增加晶粒逐渐细化,第二相含量增多,其组织由α-Mg、MgZn_2及Mg Zn Cu相组成。合金经挤压后力学性能明显提高,其中挤压ZK60合金的动态再结晶较弱,晶粒细化程度较小。铸态合金组织中的第二相在挤压过程中被打碎,并沿着挤压方向分布。挤压态合金晶粒细化程度明显,其平均晶粒尺寸可达到10~13μm。Mg Zn Cu相呈短棒状分布在晶界,而Mg Zn2相呈细小的颗粒状分布在基体上。挤压态合金力学性能改善的原因可归结为细晶强化、第二相弥散强化及固溶强化综合作用的结果。其中挤压态Mg-6Zn-1.0Cu-0.6Zr力学性能最优,其抗拉强度、屈服强度及伸长率分别达到320.22 MPa,240 MPa和11.48%。  相似文献   

11.
《塑性工程学报》2015,(3):121-126
通过光学显微镜、扫描电镜、能谱分析及力学性能测试等手段,研究轧制和热处理工艺对Mg-11Li-3Al-1.5Si-1.5Nd合金板材组织和力学性能的影响,探讨其析出相在合金中的作用。结果表明,铸态合金经过均匀化处理后,汉字形貌的Mg2Si相溶入基体,其综合性能大幅下降。但在随后的轧制过程中,合金的力学性能得到双重提升。合金板材经过淬火处理后,晶粒非常细小,主要由β-Li基体和沿轧制方向分布的少量颗粒状Mg17Al12相组成,抗拉强度最大可达344.3MPa。而退火处理后,其仍保留轧制态的组织,但随着退火温度的升高,析出的白色α-Mg相逐渐减少,板材的抗拉强度略微下降,而塑性则呈先升后降再升高的趋势,其中220℃×1h退火板材的塑性最好,其伸长率为73.1%。  相似文献   

12.
研究了复合加工(挤压+轧制)Mg-2Y-0.5Zn-0.5Ni(摩尔分数,%,MYZN)合金的显微组织和力学性能。结果表明,挤压MYZN合金的组织主要由α-Mg、片状和块状的18R-LPSO相、细条纹状的14H-LPSO相以及Mg2Y和Mg24Y5颗粒相组成。在350℃下轧制后,合金发生了不均匀的塑性变形,形成了大量含有高位错密度的未再结晶区,再结晶晶粒和颗粒相得到显著细化,晶粒尺寸略微增加,LPSO相增多且弥散分布,同时形成了较强的基面织构。拉伸测试结果表明,挤压+轧制合金表现出理想的室温力学性能,其屈服强度(σ0.2)、抗拉强度(σb)和伸长率(δ)分别为372 MPa、409 MPa和8.4%,与挤压合金相比,σ0.2和σb分别提升了10.7%和4.1%。力学性能的提高主要归结为大量小角度晶界的晶界强化、LPSO相的析出和扭折强化以及织构强化。  相似文献   

13.
对固溶时效的Mg-11Li-3Al-xZr(x=0、0.1)合金挤压板进行了轧制,采用OM、XRD分析了轧制前后合金显微组织的变化,通过拉伸试验测试了不同变形量下合金的拉伸性能。结果表明,固溶时效合金组织主要由β-Li和少量颗粒状化合物组成,轧制过程中合金内部析出α-Mg、θ-MgLi_2Al以及AlLi等相,并且随着轧制进行,θ-MgLi_2Al相逐渐转变为AlLi相。随着轧制变形量增大,合金晶粒尺寸变大,固溶时效Mg-11Li-3Al-xZr合金的力学性能先升高后降低。Mg-11Li-3Al合金在60%冷变形量时综合性能最好(抗拉强度为242 MPa,伸长率为46%);Mg-11Li-3Al-0.1Zr合金在40%变形量下综合性能最佳(抗拉强度为255 MPa,伸长率为24%)。  相似文献   

14.
利用坩埚电阻炉熔炼Mg-1%Ca-1%Zn合金铸锭,在380℃进行挤压变形处理,采用金相显微镜、X射线衍射仪、拉伸试验机研究了挤压变形处理对Mg-1%Ca-1%Zn合金组织与性能的影响。结果表明:Mg-1%Ca-1%Zn合金铸锭的显微组织由α-Mg、Mg2Ca和Mg6Ca2Zn3相组成,经挤压后第二相破碎,发生动态再结晶,晶粒显著细化,第二相沿晶界分布状态得到改善。与铸态相比,挤压后Mg-1%Ca-1%Zn合金的力学性能显著提高,且随着拉伸试验中拉伸速率增加,合金的强度增加,塑性下降,表现出应变率强化效应。  相似文献   

15.
利用喷射成形技术制备了Mg12Al1.5Zn6.5Ca1Nd镁合金,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试手段,研究了挤压态实验合金的微观组织及力学性能。结果表明:挤压态实验合金组织主要由α-Mg和Al2Ca组成,合金组织为等轴晶,晶粒大小约为2μm,第二相Al2Ca颗粒主要弥散分布在晶界处,颗粒平均尺寸小于1μm;基体内存在位错网及位错塞积,Al2Ca相中存在孪晶结构;合金抗拉强度(σb)、屈服强度(σ0.2)、延伸率(δ)分别为470 MPa、350 MPa、4.7%,主要强化方式为细晶强化、弥散强化、固溶强化;断口存在微孔聚合形成的孔洞,孔洞底部的杂质相或孔洞周围硬脆相与基体之间易萌生微裂纹,合金断裂机制为微孔聚合型沿晶断裂。  相似文献   

16.
采用挤压铸造工艺制备Mg-Zn-Y准晶增强AZ91D镁基复合材料,研究挤压压力对此复合材料显微组织和力学性能的影响。研究结果表明:挤压铸造工艺是细化晶粒的有效方法,复合材料由α-Mg基体、β-Mg17Al12相以及二十面体Mg3Zn6Y准晶相(I相)组成,且随着挤压压力的增大,β-Mg17Al12相以及Mg3Zn6Y准晶颗粒含量增加,基体晶粒进一步细化,α-Mg树枝晶向等轴晶转变;当挤压压力为100 MPa时,极限抗拉强度和断后伸长率达到最大值,分别为194.3 MPa和9.2%,拉伸断口出现大量韧窝;准晶增强AZ91D镁基复合材料的强化机制主要为细晶强化和准晶颗粒强化。  相似文献   

17.
利用光学显微镜、扫描电镜、X射线衍射、拉伸试验等方法,研究了固溶处理和挤压对Mg-6Y-7RE-0.4Zr合金显微组织和力学性能的影响,以及挤压后合金的高温力学性能。结果表明,铸态合金组织主要由α-Mg基体和Mg24Y5、Mg12RE相组成,经过固溶处理(500℃×8h)之后,Mg-Y相基本消失,Mg-RE相仍有部分存在于晶界处;室温条件下,挤压后合金塑性有了大幅度提高,抗拉强度由156MPa提高到260MPa,且出现了明显的屈服特征,屈服强度为220MPa,伸长率由0.5%提高到7.0%;高温条件下,低于250℃时挤压态合金仍保持与室温条件下相当的力学性能,300℃时强度有所降低,伸长率大幅度提高,σ=215MPa,σ=164MPa,δ=20.5%。  相似文献   

18.
《铸造》2015,(12)
采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、万能拉伸试验机等手段,研究了不同挤压压力(0,50,100,150 MPa)对挤压铸造Mg_(93)Zn_6Y_1合金显微组织与力学性能的影响。结果表明:不同挤压压力下合金显微组织由基体α-Mg相和I-Mg_3YZn_6准晶相组成。α-Mg相呈枝晶状形态存在,分枝明显,I-Mg_3YZn_6准晶相以(I-Mg_3YZn_6+α-Mg)层片状共晶组织形态存在,呈网状分布在基体枝晶间。随着挤压压力的增大,α-Mg晶粒明显细化,层片状共晶组织变得细小,且由连续网状逐渐变为断裂网状,分布更均匀。合金的拉伸力学性能随着挤压压力的增大而逐渐提高,当挤压压力为150 MPa时,合金拉伸力学性能最优,其抗拉强度和伸长率分别为193 MPa和4.2%,增幅为30.4%和75.0%,合金力学性能的提高主要归因于细晶强化和I-Mg3YZn6相的强化作用。合金拉伸试样的断口形貌呈现准解理断裂特征。  相似文献   

19.
在AM60镁合金中添加不同含量的稀土元素Gd和Y,形成AM60-RE,并进行T4处理。通过高温拉伸力学试验测定合金的抗拉强度和伸长率。结合金相显微组织观察表明,土元素Y和Gd能够通过固溶强化作用减少AM60镁合金在高温拉伸时的软化,并且通过第二相强化减少Mg17Al12相数量以及在130℃时的软化、粗化,改变其形貌;同时Y、Gd与Mg、Al形成的高熔点化合物在130℃时能强化AM60镁合金基体。添加Y和Gd的RE-AM60镁合金在130℃下,铸态抗拉强度可达227 MPa,T4处理后达到236 MPa,与未添加稀土的AM60相比,铸态抗拉强度提高了12.4%,T4态抗拉强度提高了13.5%。  相似文献   

20.
采用铁模铸造法制备了Mg-5Al-0.3Mn-2Ce镁合金。合金铸锭在410℃均匀化处理24h后,在400℃进行热轧试验。经过4道次轧制,合金的总压下量为62%。利用X-射线衍射仪、光学显微镜、扫描电子显微镜和拉伸试验研究了铸态合金和轧制态合金的组织和力学性能。结果表明,Mg-5Al-0.3Mn-2Ce合金由α-Mg和Al11Ce3相组成。轧制变形明显细化了合金的晶粒尺寸,轧制后合金的平均晶粒尺寸约为20μm。轧制后合金强度也得到了显著提高。轧制态合金的抗拉强度和屈服强度分别为301MPa和222MPa,与铸态合金相比,分别提高了69%和196%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号