首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以316L不锈钢纤维毡为原料,采用不同的烧结工艺,制备出孔隙度为70%~95%的不锈钢纤维多孔材料,研究了纤维丝径、孔隙度、烧结温度和保温时间对其拉伸性能的影响。研究表明,不锈钢纤维多孔材料的拉伸过程主要分为3个阶段:弹性阶段、塑性变形阶段和断裂阶段。纤维越细,多孔材料的抗拉强度越高;随着孔隙度的增加,多孔材料的抗拉强度逐渐降低;提高烧结温度或延长保温时间,均会提高多孔材料的抗拉强度。  相似文献   

2.
本文以8μm不锈钢纤维毛毡为原料,利用体积称重法和高温烧结工艺制备出具有不同孔隙率、平均孔径和厚度的不锈钢纤维多孔材料。通过结构优化设计了正梯度结构、反梯度结构和薄膜复合结构,对三种结构进行了隔声性能的测试,分别研究了三种结构的隔声特性。隔声结果表明,不锈钢纤维多孔材料具有一定的隔声性能,厚度为20mm,孔隙率为85%,在50~6400Hz频率范围内,不锈钢纤维多孔材料的平均隔声量为18.92 dB;其孔隙率越低,平均孔径越小,厚度越厚,材料的隔声性能越好;设计的正梯度和反梯度结构的隔声性能比单层不锈钢纤维多孔材料的隔声性能差;添加金属薄膜的不锈钢纤维多孔复合材料在中高频处的隔声性能有很大提高,厚度为20mm,平均隔声量达27.86dB,最高处提高16.96dB。  相似文献   

3.
本文设计两种不锈钢纤维多孔材料的铺制方法:平行铺制和直立铺制,通过控制铺制方法、长径比和烧结工艺得到具有不同孔结构的不锈钢纤维多孔材料,对具有不同孔结构的不锈钢纤维多孔材料的吸声性能进行分析,结果表明,长径比为5000的不锈钢纤维多孔材料的性价比最高;当材料厚度≤15mm时,平行铺制的纤维多孔材料较直立铺制的吸声性能好;当材料厚度>15mm时,铺制方法的影响不显著;烧结结点数量的多少对不锈钢纤维多孔材料吸声性能贡献不大。  相似文献   

4.
采用模压成形工艺制备连续梯度不锈钢多孔材料。试验对所制备的不同厚度连续梯度不锈钢多孔试样的收缩率及微观形貌进行了分析。结果表明:通过烧结试样的几何轮廓证实连续梯度多孔试样烧结后发生变形——相邻梯度层烧结应力的不同造成圆柱状试样烧结后变成圆台状;烧结过程中连续梯度多孔试样相邻梯度层间力的作用能够促进粉末烧结,对试样的烧结收缩产生影响,并且,粉末粒度越小,这种影响越明显;选择合适的级配粉末以及梯度层间合理的粉末体积或质量搭配,通过不同梯度层间烧结应力的相互抑制作用,可以实现同步收缩烧结,有效解决连续梯度不锈钢多孔材料烧结过程中出现的变形、开裂问题。  相似文献   

5.
不锈钢纤维烧结多孔材料孔结构分形分析   总被引:1,自引:0,他引:1  
借助分形几何理论研究了不锈钢纤维烧结多孔材料孔结构的分形特征.通过对不锈钢纤维烧结多孔材料的扫描图像进行数字化处理,并利用盒维法计算分形维数,研究了盒维法计算分形维数的影响因素.确定出分形维数与多孔材料孔隙度之间的定量关系,同时说明了分形维数的物理意义.  相似文献   

6.
金属多孔材料力学性能的研究   总被引:4,自引:0,他引:4  
利用316不锈钢粉末,采用等静压成型和轧制成型的方法制备金属多孔材料,研究不同成型工艺对金属多孔材料力学性能的影响,结果表明金属多孔材料的力学性能根据使用工况可以用环拉强度、拉伸强度、剪切强度以及弯曲性能来表征.通过二次烧结可以明显改善多孔材料的烧结颈,从而可使拉伸强提高38.7%,剪切强度提高9.4%,明显改善金属多孔材料的力学性能.  相似文献   

7.
本文针对限域空间(≤5mm)噪声防护对超薄吸声结构的重大需求,以不锈钢纤维毡为原料,利用低温烧结技术制备了由不锈钢纤维多孔材料和金属薄膜组成的复合膜材料。利用B&K声学测试平台对复合膜材料进行频率范围在50~1000Hz之间吸声系数的测试,分析了结构参数对复合膜材料吸声性能的影响规律。结果表明,通过分别研究金属纤维多孔材料的孔结构(孔径、丝径、烧结结点)及金属薄膜的层数对复合膜材料吸声性能的影响规律,发现在频率为50~1000Hz的范围内,超薄复合膜材料的最优结构为金属纤维多孔材料按照细丝径、小孔面向声源,粗丝径、大孔在后的顺序排列,材料内部复合铜箔可有效提高材料在低频处的吸声性能。  相似文献   

8.
不锈钢纤维增强的不锈钢多孔材料的制备和力学性能   总被引:4,自引:1,他引:3  
研究了烧结温度和时间对不同量不锈钢纤维增强的不锈钢多孔材料性能的影响。实验结果表明:提高烧结温度、延长烧结时间以及增加不锈钢纤维的含量均能使该材料的力学性能得以改善;开口孔隙度及渗透系数随纤维含量的增加而降低。  相似文献   

9.
烧结不锈钢纤维多孔材料是一种结构功能一体化材料,在冲击能量吸收和过滤分离等领域有广泛应用。本文利用微波加热法制备了316L不锈钢纤维多孔材料,研究了微波烧结工艺对材料微观结构和力学性能的影响。研究表明微波烧结工艺明显降低了材料的烧结温度,缩短了烧结时间,由此抑制了纤维杆上晶粒的生长,材料的力学性能也得到了提升。微波电磁场在金属纤维间引发的微电弧可能起到了加快烧结进程的作用。  相似文献   

10.
烧结不锈钢纤维多孔材料是一种结构功能一体化材料,在冲击能量吸收和过滤分离等领域有广泛应用。利用微波加热法制备了316L不锈钢纤维多孔材料,利用μ-CT,SEM等研究了微波烧结工艺对材料微观结构和力学性能的影响。结果表明微波烧结工艺明显降低了材料的烧结温度,缩短了烧结时间,由此抑制了纤维杆上晶粒的生长,材料的力学性能也得到了提升。微波电磁场在金属纤维间引发的微电弧可起到加快烧结进程的作用。  相似文献   

11.
以凝胶注模工艺为基础,结合微波烧结技术,制备了形状和孔隙可控的多孔不锈钢材料。采用扫描电子显微镜、密度仪、抗弯实验等手段研究了粉末粒径、粉末形状、固相含量等特性对多孔不锈钢制备工艺和孔隙形貌、孔隙率的影响。结果表明:粉末粒径越小,形状因子越大,胶体固相含量越高,制备得到的多孔不锈钢的孔隙率越高;粉末形状因子越小,多孔不锈钢的孔隙越不均匀;固相含量越高,虽然坯体强度有所提高,但凝胶体系的粘度也越大,流动性较差,适合不锈钢粉末凝胶注模的最佳固相含量在58%左右。通过控制颗粒直径、颗粒形状、固相含量及采用颗粒级配的方法,可实现对凝胶注模制备多孔不锈钢的孔隙结构和孔隙率的有效控制。  相似文献   

12.
采用机械合金化法、退火工艺和热处理工艺制备了Fe3Al网络结构多孔材料,通过扫描电镜、XRD观察分析了该结构材料的形貌特征,研究了烧结温度、升温速度、孔隙率对该材料的抗压强度和断裂韧度的影响,并初步探讨了材料的断裂机理.结果表明,随着烧结温度的升高,Fe3Al多孔材料中的孔筋逐渐致密,1 420 ℃烧结时,材料的组织、性能最好,烧结温度继续升高时材料出现明显坍塌变形,不利于材料的成形.孔隙率是影响Fe3Al多孔材料力学性能的主要因素,通过较低的烧结升温速率可降低孔隙率,获得结构致密的骨架,从而有助于提高多孔材料的抗压强度和断裂韧度.利用桥接和自愈合机理探讨了改善多孔材料力学性能的途径,通过添加Ti和控制适量的孔洞,提高了材料的抗压强度和断裂韧度.  相似文献   

13.
不锈钢纤维多孔材料的吸声性能   总被引:7,自引:1,他引:7  
采用不锈钢纤维为原料制备不同孔隙性能的纤维多孔材料,采用驻波管法检测该纤维多孔材料的空气声吸收系数,研究材料的孔隙度、纤维直径以及材料厚度等参数对吸声性能的影响,同时研究在材料背后设置空气层以及空气层厚度对材料吸声性能的影响关系。结果表明:实验采用的不锈钢纤维多孔材料具有较好的吸声性能,材料的孔隙度越高、厚度越大、纤维越细,材料的吸声性能越好,在材料背后设置空气层可显著改善其低频吸声性能,材料背后的空气层厚度越大,材料的低频吸声性能越好。  相似文献   

14.
采用分形理论表征孔隙的结构特征,通过对烧结不锈钢纤维多孔材料的扫描电镜(SEM)照片进行图像处理和分形分析,详细研究图像分辨率、获取图像时的放大倍数、灰度图转化为二值图时阈值的大小等因素对孔结构分形分析结果的影响,并研究它们与分形维数的定性关系.结果表明,采用的烧结纤维多孔材料具有明显的分形特征,图像分辨率、放大倍数、阈值等因素对分形维数计算结果影响显著:与SEM图像的原始分辨率相比,分辨率变化越大则分形维数越大;分形维数随着放大倍数的增大而减小;灰度图转化为二值图时的阈值存在最佳值,且随着阈值的增大,分形维数先增大后减小.通过理论推导,建立了多孔材料孔隙度和渗透性能与孔结构分形维数之间的数学关系.可通过孔结构分形维数、面孔隙度、孔径等参数合理预测多孔材料的体孔隙度、渗透性能,预测结果与实测结果吻合良好.  相似文献   

15.
纤维多孔材料梯度结构的吸声性能研究   总被引:1,自引:3,他引:1  
为了提高纤维多孔材料的低频吸声性能,并解决材料在高频段吸声性能的起伏问题,将2~3层不同孔隙性能的不锈钢纤维材料以不同的方式组合成梯度结构,研究了纤维多孔材料梯度结构的吸声性能.结果表明:梯度多孔吸声结构可有效改善低频吸声性能.不同孔隙度的排布方式对梯度结构的吸声性能有显著影响.按照孔隙度从高到低排布有利于吸声性能的提高.在此前提下,孔隙度越高、厚度越大,梯度结构的吸声性能越好.  相似文献   

16.
王金香  彭小波 《铸造》2012,61(6):673-675
为了研究宏观孔的引入对铜的阻尼性能的影响,运用气压渗流法制备了多孔铜,并利用多功能内耗仪对材料的阻尼行为进行了研究.研究发现,材料的阻尼性能得到提高,提高的幅度随孔隙率的增大或孔径的减小进一步增加,并对应变振幅有明显的依赖性.通过透射电镜微观分析,发现多孔铜中存在大量位错.试验结果表明,宏观孔和位错是材料阻尼性能提高的两大影响因素.  相似文献   

17.
为了获得轻质、高强和高阻尼的多孔NiTi合金,采用微波烧结协同镁造孔技术制备多孔NiTi合金.考察多孔NiTi合金的显微组织、力学性能、相变行为、超弹性和阻尼性能.结果表明:当烧结温度低于或等于900℃时,多孔NiTi合金主要由B2 NiTi相和少量B19'NiTi相组成.随着烧结温度的升高,多孔NiTi合金的孔隙率逐...  相似文献   

18.
详细介绍了不锈钢纤维烧结毡在微生物燃料电池阳极中的应用现状及前景.不锈钢纤维烧结毡是采用微米级的不锈钢纤维经无纺铺制、叠配、真空烧结而成.它是由不同丝径的纤维形成的一种三维金属多孔材料,具有机械强度高、渗透性能好、导电性好、吸附能力强、耐腐蚀、耐高温、易加工等优点,在高效微生物燃料电池阳极材料方面呈现出了巨大的应用价值...  相似文献   

19.
陶素连 《机床与液压》2015,43(24):91-95
通过烧结铜纤维和微沟槽铜板制造得到了一种具有高孔隙率的新型沟槽烧结纤维复合毛细芯多孔材料。通过对沟槽烧结纤维复合毛细芯多孔材料进行拉伸性能测试,研究了纤维参数和烧结参数对拉伸性能的影响。通过大量的拉伸实验数据得到了沟槽烧结纤维复合毛细芯多孔材料的典型的应力应变图。对于在相同的烧结参数下制造得到的相同质量的沟槽烧结纤维复合毛细芯多孔材料,其抗拉强度随着孔隙率和直径的增加而减少。  相似文献   

20.
粉末冶金多孔材料,也称多孔烧结材料,由金属或合金粉末经成形、烧结工艺而制成。常用的金属或合金有青铜、不锈钢、铁、镍、钛、钨、钼以及难熔金属化合物等。粉末冶金多孔材料具有孔径和孔隙度均可控制、导热、导电、可焊接和加工、高的比强度、冲击韧性、能量吸收性能、化学活性、阻波性能、独特的光学性能、良好的透过性、选择性的渗透与吸附性、止振性能等一系列优异的性能。在气体和液体过滤、高温燃气的净化过滤、熔融金属的过滤、固体催化、缓冲器及吸震器、电极材料、屏蔽材料、流体分布装置、热交换器、加热器、散热器、结构材料、生物材料等领域得到广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号