首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《塑性工程学报》2015,(6):130-135
为获得SA508-3钢铸态粗晶组织热变形过程中的晶粒细化和均匀化规律,通过Gleeble单道次高温热压缩实验(950℃~1250℃,0.001s-1~1s-1,真应变ε=0.8),发现铸态粗晶在低温硬化-回复阶段时的应力水平较锻态细晶的略高,通过金相分析发现,该现象是由铸态粗晶组织含有大量形变孪晶及其较差的变形协调性所致。同时分析了不同变形条件(温度和应变速率)对再结晶晶粒尺寸和混晶程度的影响规律,得到了动态再结晶完成后,变形温度为1 050℃~1 200℃、应变速率为0.01s-1~1s-1的变形参数对SA508-3钢铸态粗晶组织具有较好的细化晶粒作用,最高晶粒度可达6级~7级;1050℃~1200℃、0.001s-1~0.1s-1的变形参数可有效地降低SA508-3钢铸态粗晶组织的混晶程度,动态再结晶完成后组织比较均匀。  相似文献   

2.
采用多相场(Multi-phase-field,MPF)模型模拟动态再结晶晶粒的生长过程,并用Kocks-Mecking(KM)方程模拟其力学行为。用热力模拟机对SA508-3钢进行了不同温度和应变速率下的热压缩试验,从热压缩流动应力-应变曲线中提取SA508-3钢动态再结晶特征参数并用于计算动态再结晶模型参数。利用所得参数对SA508-3钢的动态再结晶过程进行了多相场模拟,预测了热塑性变形过程中的组织演变和真应力-真应变曲线,与试验结果吻合较好。试验和数值结果均表明,流动应力随应变速率的增大及变形温度的降低而增大。本文的方法可用于研究其它材料的动态再结晶行为,为优化热锻工艺提供指导。  相似文献   

3.
采用Gleeble-1500D热力模拟压缩试验机,研究P92锻态料在温度900℃~1300℃、应变速率0.5s-1~25s-1、变形程度50%条件下的热变形行为,分析热变形参数对应力-应变曲线、动态再结晶组织演变规律和机制的影响,获得了动态再结晶分数和动态再结晶晶粒尺寸。结果表明,P92钢动态软化机制有动态回复、不连续动态再结晶和几何动态再结晶3种方式。动态再结晶分数随温度的升高而增大,且随着应变速率的增大,发生不连续动态再结晶的温度范围扩大。采用提高热变形温度和高应变速率的改进工艺,可获得P92钢优良的组织和性能。  相似文献   

4.
氮强化高锰奥氏体钢热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500热力模拟试验机在温度为1253~1423K,应变速率为0.1~10s-1的条件下对32Mn-7Cr-1Mo-0.3N奥氏体钢进行了热压缩变形试验,测定了其真应力-应变曲线,观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.真应变为0.6时,在1423K、应变速率在0.1~10s-1之间的试样均已发生完全动态再结晶;在1373K以下变形时,应变速率在0.1~10s-1之间,试样发生部分动态再结晶.动态再结晶晶粒尺寸随着变形温度的升高而增大,随着应变速率的升高而减小.32Mn-7Cr-1Mo-0.3N奥氏体钢的热变形激活能Q值为469.03kJ/mol,并获得热变形方程.  相似文献   

5.
HPS485wf桥梁钢奥氏体动态再结晶规律及其本构关系模型   总被引:1,自引:1,他引:0  
采用热模拟试验、动态再结晶唯象理论和回归分析,研究了HPS485wf桥梁结构钢在温度为1273~1473K,变形速率为0.1~10s-1条件下热压缩变形的动态再结晶行为.分析了流变应力的变化规律和加工硬化率-应变图;判断了该钢发生动态软化的类型;得到了形变激活能和临界参数与温度补偿应变速率因子Z之间的关系;建立了相应的高温变形本构关系方程.  相似文献   

6.
采用Gleeble-1500D型热力模拟试验机对不同初始奥氏体晶粒尺寸的SA508Gr.4N钢,在变形温度1050~1250℃、应变速率0.001~0.1 s~(-1),道次间隔保温时间120~300 s进行双道次热压缩变形试验。研究了SA508Gr.4N钢的亚动态再结晶行为。结果表明:在本试验变形条件范围内,两种不同初始奥氏体晶粒尺寸的SA508Gr.4N钢均能发生亚动态再结晶。初始奥氏体晶粒直径越细小,SA508Gr.4N钢越易发生动态再结晶。变形道次间隔时间越长,亚动态再结晶就越显著。亚动态再结晶分数随着变形温度的升高以及初始奥氏体晶粒直径的增加而增大。  相似文献   

7.
在Gleebe-1500型热模拟试验机上进行了TC11合金在变形温度1023~1233K、应变速率0.001~10.0s-1、变形程度30%~70%时的热模拟压缩试验.结果表明,在α+β两相区变形时,变形温度对初生α相晶粒尺寸有影响;高应变速率下变形时,在一定的变形温度下合金内部将发生动态再结晶,且随变形程度增大,再结晶温度逐渐降低.同时,应变速率、变形程度和变形温度对合金动态再结晶发生的影响逐渐减小;确定了合金发生动态再结晶的最佳变形参数是在应变速率1.0 s-1附近,变形程度约50%,变形温度1123~1213K.  相似文献   

8.
《塑性工程学报》2020,(2):135-143
采用Gleeble-3500热模拟试验机对高铝高强钢在变形速率为0. 01~10 s-1、变形温度为925~1225℃的热变形条件下进行压缩试验,以真应力-应变曲线为基础数据研究其高温再结晶行为。通过对晶粒尺寸的统计来探究热变形条件对热变形后晶粒尺寸的影响。通过处理加工硬化率-应力曲线,标定数据中能揭示动态再结晶演变过程的3个特征点,即临界应变、峰值应变及最大软化速率应变。引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程,并引入Z参数作为预测发生再结晶程度的依据。结果表明:高铝高强钢热加工过程是加工硬化和再结晶软化共同作用的。在发生再结晶条件范围内,Z值越小,发生动态再结晶的程度越大。  相似文献   

9.
《塑性工程学报》2015,(4):128-132
采用Gleeble-1500D热模拟试验机对SA508-3CL钢在变形温度800℃~1 200℃、应变速率0.001s-1~1s-1条件下进行热压缩实验,并将获得的真应力真应变数据引入Arrhenius型本构方程,通过多元线性回归计算,得到了SA508-3CL钢的变形激活能为422.455kJ·mol-1,同时建立了该钢的流变应力本构方程。将功率耗散图与失稳图叠加,得到了SA508-3CL钢在应变量为0.3、0.5和0.7时的热加工图,对在应变量为0.7时的热加工图及金相组织分析表明,该钢的组织缺陷主要是局部流变失稳,该钢的安全加工条件为温度1100℃~1200℃,应变速率0.01s-1~0.1s-1。  相似文献   

10.
300M钢的热变形行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机在1123~1423 K、以0.01~10 s-1的应变速率,对300M钢进行了高温轴向压缩变形试验,并对不同变形条件下300M钢的金相组织进行了观察分析。结果表明:300M钢的高温流变曲线类型可分为动态回复型和动态再结晶型两种,随着变形温度的降低和变形速率的增加,300M钢的高温流变曲线逐渐由动态再结晶型向动态回复型转变。流变应力和峰值应变随变形温度的升高和应变速率的降低而减小;实验钢在真应变为1.2、应变速率为0.01~10 s-1的条件下,随变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10 s-1时,其变形温度高于1423 K,才会发生完全动态再结晶;测得300M钢的热变形激活能为391.51 kJ/mol,并建立了300M钢的热变形方程以及动态再结晶条件下峰值应变εp与Zener-Hollomon因子的定量关系。  相似文献   

11.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

12.
在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下,利用MMS-300热模拟试验机开展单道次压缩变形实验,结合SEM-EBSD和TEM等观察分析技术,研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为,对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征.结果表明,该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感;当应变速率低于0.1 s-1时,热变形过程中发生动态再结晶;当应变速率高于1 s-1时,发生动态回复.通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程,分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关.随着应变量的增加,晶界迁移诱导再结晶形核;形变量进一步增加,产生大量亚晶界;相邻亚晶界上的位错攀移和滑移等运动使晶界合并,导致再结晶晶粒形成.  相似文献   

13.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

14.
基于等温恒应变速率压缩实验,对300M钢在变形温度为850℃~1180℃、应变速率为0.01s-1~10s-1条件下的热变形行为,及其动态再结晶动力学行为进行研究。结果表明,当ln Z>33.37时,300M钢应力-应变曲线呈双峰不连续动态再结晶型,热变形过程发生两轮动态再结晶;当ln Z<33.37时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,热变形过程仅发生一轮动态再结晶。根据压缩实验结果,分别构建300M钢第一轮动态再结晶和第二轮动态再结晶的峰值应变、临界应变、平均晶粒尺寸和体积分数动力学模型。  相似文献   

15.
42CrMo钢动态再结晶的临界条件   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对挤压态42CrMo钢进行等温热压缩实验,研究了在温度为1123~1348 K,应变速率为0.01~10 s-1条件下的动态再结晶行为。流变应力曲线对比分析表明:42CrMo钢在0.01~1 s-1的低应变速率下(除1 s-1和1123 K)发生动态再结晶型软化,在1~10 s-1的高应变速率下(含1 s-1和1123 K)发生动态回复型软化。采用加工硬化率的方法处理流变应力数据,结合lnθ-ε曲线的拐点及2(lnθ)/ε2-ε曲线的零点判据,研究42CrMo钢热塑性变形中动态再结晶发生的临界条件。结果表明:所有压缩试样均发生了动态再结晶;增加应变速率及降低变形温度会抑制动态再结晶的发生。进一步引入表征动态再结晶临界条件的临界应变模型,建立了临界条件与各热力参数之间的数学关系。验证表明该模型相对误差不超过7.8%。  相似文献   

16.
35CrMo钢热变形机制的模拟研究   总被引:1,自引:0,他引:1  
以弯曲镦锻 3 5 Cr Mo钢火车曲轴为例 ,通过将该钢以 90 0℃~ 1 2 5 0℃变形温度 ;0 .0 5 s-1、0 .5s-1、1 .0 s-1的应变速率 ;在 Greeble-1 5 0 0试验机上进行压缩 1 5 %~ 80 %的热变形实验 ,和随后进行的微观组织分析得出了 :材料热变形屈服应力变化模型 ;材料热变形本构关系 ;动态与静态再结晶模型和热加工参数与微观组织变化的相关性资料。描绘了在 1 2 5 0℃ ,应变速率为 1 .0 s-1时 ,3 5 Cr Mo钢热变形应力应变曲线和相应的再结晶组织。通过对 3 5 Cr Mo钢在高温大变形条件下 ,试件内部各区域晶粒尺寸的回归计算 ,验证了该钢热变形晶粒计算模型。所得出的实验结果和计算模型为热成形工艺分析和质量控制提供了科学的依据  相似文献   

17.
利用Gleeble-3800热模拟试验机研究了一种新型超高强度不锈钢在变形温度850~1150 ℃,应变速率0.01~10 s-1条件下的热压缩变形行为,建立了钢的热变形方程及动态再结晶晶粒的尺寸模型。结果表明,变形过程中,变形温度降低和应变速率增加都会使钢的高温流变应力增加。应变速率相同时,随着变形温度的升高,动态再结晶程度逐渐增加;而当变形温度相同时,随着应变速率的降低,动态再结晶晶粒发生长大。试验钢的变形激活能为452.02 kJ/mol,热变形方程为:=6.93309×1016[sinh(0.00467σ)] 7.2154exp(),动态再结晶临界应变εc与形变温度和应变速率的关系为:εc=8.89×10-3(exp())0.07328,动态再结晶晶粒尺寸模型为DDRX=947.28×Z-0.123。  相似文献   

18.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。  相似文献   

19.
利用Gleeble-1 500 D热力模拟试验机,对304不锈钢进行了热压缩模拟试验。研究了变形温度在950℃~1 200℃之间,变形速率为1×10-3 s-1、1×10-2 s-1、1×10-1 s-1,变形量为50%的变形行为及组织特征,建立了304钢的静态再结晶晶粒尺寸模型。结果表明:变形量、变形温度、应变速率因素的影响较大;应变量越大,变形温度越低,应变速率越高,晶粒越细;304钢静态再结晶晶粒尺寸模型的建立为大锻件静态再结晶数值模拟分析提供了可靠的判据。  相似文献   

20.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号