首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 875 毫秒
1.
采用力学性能测试、SEM和XRD等手段研究了淬火+低温回火处理的0Cr16Ni6高强度不锈钢和过时效处理的00Cr11Ni11MoTi马氏体时效不锈钢,并分析了残留/逆转变奥氏体对试验钢超低温缺口抗拉强度和冲击性能的影响。结果表明,在两种试验钢室温强韧性相近的情况下,0Cr16Ni6钢在超低温下(-196 ℃)的缺口抗拉强度和冲击性能显著优于00Cr11Ni11MoTi钢。根据冲击试样远离断口和断口附近马氏体/奥氏体衍射峰的相对强度分别定量计算的残留/逆转变奥氏体含量,发现在裂纹形成和扩展过程中0Cr16Ni6钢有接近90%的残留奥氏体通过应变诱发相变生成马氏体,显著改善了超低温韧性;而过时效00Cr11Ni11MoTi钢形成的逆转变奥氏体具有较高的稳定性,难以发生应变诱发马氏体相变,改善超低温韧性作用程度有限。  相似文献   

2.
通过试验研究了不同等温转变温度下低温贝氏体钢的显微组织,探索了残余奥氏体的形态和稳定性对试验钢力学性能和断裂行为的影响。利用扫描电镜、透射电镜和X射线衍射对低温贝氏体钢的微观组织、拉伸及冲击断口形貌进行了表征。结果表明,随着等温转变温度的升高,试验钢的抗拉强度保持在1500 MPa以上,屈服强度由945 MPa下降至806 MPa,断后伸长率由14.0%下降至9.0%。等温转变温度对试验钢残余奥氏体的形态和稳定性有明显影响,随着等温转变温度的上升,残余奥氏体从富碳细条状和薄膜状变成贫碳块状,在塑性变形初期,这种形态的残余奥氏体大量、快速地发生应变诱发马氏体相变,为裂纹扩展提供了路径,从而降低了钢的韧性和塑性,使试验钢的拉伸和冲击断口的延性穿晶断裂特征更明显。  相似文献   

3.
对超低碳中锰钢进行了淬火+回火处理,研究了不同温度回火后试验钢的显微组织及力学性能,采用XRD法测定了低温处理(-60、-80、-100 ℃)前后试验钢中的逆转变奥氏体含量,在此基础上分析了逆转变奥氏体含量及热稳定性对试验钢力学性能的影响规律。结果表明:采用较高温度回火时,促进了逆转变奥氏体的形成,也使奥氏体稳定化元素快速富集于其中,而且随温度升高所得奥氏体更多分布于粗化的马氏体板条之间,故具有更高的稳定性;由于试验钢中逆转变奥氏体含量较多,变形过程中的TRIP效应更为显著,促进了试验钢低温韧性和塑性的提高。  相似文献   

4.
采用SEM和TEM对9Ni钢断裂过程中裂纹的扩展行为进行了研究,讨论了逆转变奥氏体在断裂过程中的作用。SEM观察结果表明,基体的塑性对裂纹尖端形状有重要影响,基体塑性较差时裂纹前端尖锐,加剧了应力集中,基体塑性较高时裂纹前端呈“钝角”,使应力集中松弛。TEM观察显示,9Ni钢裂纹的扩展有两种形式:一种是在带状薄区中呈“Z”形扩展,另一种是遇到逆转变奥氏体后偏离原来的扩展方向。研究结果也显示在两种条件下获得的逆转变奥氏体,经变形后又发生相变。这表明稳定性高的逆转变奥氏体能够在变形过程中保留下来,阻碍裂纹扩展促使9Ni钢低温韧性提高,而稳定性较低的逆转变奥氏体则在变形过程中很快发生相变。  相似文献   

5.
采用SEM和TEM对9Ni钢断裂过程中裂纹的扩展行为进行了研究,讨论了逆转变奥氏体在断裂过程中的作用。SEM观察表明,基体的塑性对裂纹尖端形状有重要影响,基体塑性较差时裂纹前端尖锐,加剧了应力集中,基体塑性较高时裂纹前端呈"钝角",使应力集中松弛。TEM观察显示,9Ni钢裂纹的扩展有两种形式:一种是在带状薄区中呈"Z"形扩展,另一种是遇到逆转变奥氏体后偏离原来的扩展方向。研究结果也显示在两种条件下获得的逆转变奥氏体,经变形后又发生相变。这表明稳定性高的逆转变奥氏体能够在变形过程中保留下来,阻碍裂纹扩展提高9Ni钢低温韧性,而稳定性较低的逆转变奥氏体则在变形过程中很快发生相变。  相似文献   

6.
评估[Ni]当量相近、[Cr]当量相同、氮含量不同的奥氏体不锈钢的低温性能和组织稳定性,测试了含氮量分别为0.614%和0.529%的奥氏体不锈钢H1和H2的低温拉伸和低温冲击性能,利用扫描电镜和X射线衍射仪分别对两种试验钢的拉伸断口与冲击断口进行了形貌观察和组织检测,利用TEM分析拉伸断口的显微组织。结果表明:两种试验钢的抗拉强度与屈服强度随着试验温度的降低单调增加,伸长率和断面收缩率逐渐减小,氮含量增加提高材料的强度但降低塑韧性;低温冲击试验的结果是氮含量增加降低试验钢的冲击性能,但对韧脆转变温度影响不大,H1与H2试验钢的韧脆转变温度分别为-122 ℃与-123 ℃。XRD与TEM的检测结果均表明此两种试验钢均具有良好的组织稳定性,低温拉伸与冲击均未发生马氏体相变与氮化物析出。  相似文献   

7.
热处理工艺对17-4PH钢低温冲击性能的影响   总被引:1,自引:1,他引:0  
研究了经两种不同工艺热处理的17-4PH钢在-60~20 ℃下的冲击性能,并对其冲击断口形貌及显微组织进行分析.结果表明:随着试验温度的降低,17-4PH钢的冲击韧性呈逐渐下降趋势;在相同的冲击试验温度下,在固溶和时效间加入816 ℃×0.5 h中间调整处理的17-4PH钢的冲击性能明显优于直接时效态试样.断口分析结果显示,直接时效态试样为准解理+韧窝混合型脆性断口,而加入中间处理的试样则为典型的韧性微孔聚集型断口形貌.加入中间处理的试样在随后的时效过程中于原始奥氏体晶界和马氏体板条界-亚晶界处产生了较多的逆转变奥氏体,呈弥散、均匀的分布,具有割裂基体、韧化组织的作用,提高了钢的低温韧性.  相似文献   

8.
利用OM、SEM、TEM和XRD试验方法,分析在两相区淬火+回火(QLT)工艺中,不同回火温度下7Ni钢组织形貌和逆转变奥氏体含量的变化,研究回火温度对7Ni钢低温强度和低温韧性的影响。结果表明:随着回火温度升高,7Ni钢抗拉强度逐渐提高,而低温韧性呈现先升高后降低的趋势。回火温度从560 ℃提高到620 ℃过程中,7Ni钢马氏体组织由粗大转变为均匀弥散细小,抗拉强度逐渐提高。当回火温度较低时,钢中马氏体回复不充分,析出的逆转变奥氏体量较少,低温韧性偏低。随着回火温度升高,7Ni钢逆转变奥氏体含量不断升高,但稳定性下降,大量不稳定的逆转变奥氏体在低温下发生转变,不利于钢低温韧性的改善。7Ni钢低温韧性随着回火温度升高呈现先升高后降低的趋势,并在580 ℃时获得最好的低温韧性。  相似文献   

9.
9Ni钢中逆转奥氏体及其稳定性的研究   总被引:3,自引:1,他引:2  
研究了调质处理工艺(CHT)下回火温度和亚温淬火热处理工艺(IHT)下亚温淬火温度对9Ni钢的显微组织、逆转奥氏体含量、逆转奥氏体中的碳含量及-192℃下冲击韧度的影响,并利用扫描电镜对9Ni钢在这两种工艺下的组织形态、分布进行了观察分析.结果表明:经低温保温后,逆转奥氏体的含量有所降低,逆转奥氏体中的碳含量却会升高,说明低温保温后不太稳定的逆转奥氏体发生了马氏体转变,留下的是C含量较高的稳定的逆转奥氏体.  相似文献   

10.
研究了回火温度对Aermet100超高强度钢断裂韧度、冲击功、显微组织和断口形貌的影响。结果表明,Aermet100超高强度钢在高密度位错马氏体基体的影响下保持在一个很高的韧性水平。随着回火温度的升高,逆转变奥氏体含量增加,从而提高了材料的韧性。  相似文献   

11.
通过SEM、XRD、疲劳试验机、冲击试验机等分析了620~680 ℃区间不同两相区淬火温度对9Ni钢强度和低温冲击性能的影响。结果表明,回转奥氏体含量和稳定性对材料性能影响显著,随着两相区淬火温度的升高,9Ni钢抗拉强度不断增大,而低温冲击性能呈现先升高后降低的非线性趋势。在640 ℃时,试样的回转奥氏体含量最高,达9.65%;断后伸长率最高,达到32.67%;冲击吸收能量最高,常温下达到332.83 J,-196 ℃条件下为297.69 J,总体展现出良好的强韧性。  相似文献   

12.
对淬火态中锰钢进行了不同温度的回火试验,研究了不同回火温度下逆转变奥氏体的含量和稳定性,及其对中锰钢强韧性能的影响。结果表明:当回火温度由630 ℃升高至670 ℃时,中锰钢室温组织中逆转变奥氏体体积分数由19%增加至42%,逆转变奥氏体稳定性不断降低;中锰钢的屈服强度由750 MPa降低至565 MPa,抗拉强度由845 MPa升高至970 MPa, -60 ℃冲击吸收能量由116 J减小至75 J。高体积分数、低稳定性的逆转变奥氏体会降低中锰钢的屈服强度,但会提高中锰钢的加工硬化能力。在冲击载荷作用下,组织中的逆转变奥氏体发生相变诱导塑性(Transformation-induced plasticity, TRIP)效应,显著提高裂纹形成功和裂纹扩展功,是中锰钢主要的韧化机制。  相似文献   

13.
研究了改善Cr-Ni-Co-Mo马氏体时效不锈钢超低温韧性的热处理工艺,即1000 ℃固溶处理后分别进行600 ℃预保温+750 ℃低温固溶处理和一次或两次直接750 ℃低温固溶处理,分析了马氏体、残留奥氏体和逆转变奥氏体含量的变化以及室温和-196 ℃抗拉强度、-196 ℃缺口抗拉强度和冲击性能。结果表明:与常规热处理工艺相比,增加750 ℃低温固溶处理后试验钢中含有较多的残留奥氏体,再经500 ℃时效后可形成更多的逆转变奥氏体,更多的残留奥氏体/逆转变奥氏体含量起到韧化作用,可显著改善试验钢的超低温韧性。进一步对比分析表明,直接进行750 ℃固溶处理工艺过程相对简单,室温和-196 ℃抗拉强度最高,-196 ℃缺口抗拉强度也最高,且缺口敏感性较低,因此更具有优势。  相似文献   

14.
在线热处理工艺中回火时间对9Ni钢逆转变奥氏体的体积分数和低温韧性有重要影响。用OM,SEM,XRD,EBSD,CVN等方法对不同回火保温时间样品中的逆转变奥氏体含量、分布及其低温韧性进行了研究。结果表明,逆转变奥氏体的体积分数随保温时间的延长先升高后降低,30 min时最高约为4.8%;低温冲击吸收能量(-192℃)在保温60 min时最高为132 J;低温韧性与逆转变奥氏体的体积分数及分布有关。  相似文献   

15.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。  相似文献   

16.
通过实验研究了深冷处理过程中的最低处理温度对9%Ni钢力学性能和逆转奥氏体含量的影响。采用了不同的深冷处理温度和保温时间,并与9%Ni钢新发展起来的热处理工艺淬火、亚稳淬火、回火(QLT)相结合。结果表明,-80℃和-110℃的冷处理对9%Ni钢的力学性能和逆转奥氏体含量没有明显影响。然而,-140℃保温24小时的深冷处理能够提高9%Ni钢的冲击韧性,其机理主要在于深冷处理使得块状的逆转奥氏体转变为条状。此外,-140℃深冷处理通过等温马氏体转变值得逆转奥氏体的含量减少。-196℃保温24小时深冷处理增加了逆转奥氏体的含量,同时细化了二次马氏体板条组织, 从而使得9%Ni钢的室温和低温冲击韧性均得到提高。其机理主要是由于深冷-196℃深冷处理促使了超细碳化物的析出,同时增加了组织内应力,从而为逆转奥氏体在回火过程中的形核提供了更多了形核位置。  相似文献   

17.
采用XRD、光学显微镜、扫描电镜、拉伸试验机和冲击试验机等研究了终轧温度(900 ℃和1000 ℃)对Cu合金化Fe-18Mn-0.6C TWIP钢微观组织和力学性能的影响。结果表明,低温终轧会明显提高TWIP钢的强度,但会使伸长率和强塑积降低;高温终轧更有利于提高TWIP钢塑性和室温冲击性能。高温终轧时可获得较大尺寸的奥氏体晶粒,降低孪生所需的临界应力,具有更高的应变强化能力,拉伸断口和冲击断口的韧窝更大更深,表现出优异的塑性和韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号